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Abstract 

 SCADA (supervisory control and data acquisition) systems monitor and control 

many different types of critical infrastructure such as power, water, transportation, and 

pipelines.  These once isolated systems are increasingly being connected to the internet to 

improve operations, which creates vulnerabilities to attacks.  A SCADA operator receives 

automated alarms concerning system components operating out of normal thresholds.  

These alarms are susceptible to manipulation by an attacker.  This research uses 

information theory to build an anomaly detection model that quantifies the uncertainty of 

the system based on alarm message frequency.  Several attack scenarios are statistically 

analyzed for their significance including someone injecting false alarms or hiding alarms.  

This research evaluates the use of information theory for anomaly detection and the 

impact of different attack scenarios.  

 

  



v 

AFIT-ENS-14-M-32 

 

 

 

 

 

 

 

 

 

To My Wife and Children 

 

 



vi 

Acknowledgments 

 I would like to express my sincere appreciation to my thesis advisors Dr. Richard 

Deckro and Major Jennifer Geffre.  They made this thesis possible by their direction, 

insight, advice, and support.  I am thankful for Dr. Deckro sharing his experience and 

knowledge of information operations throughout this effort.  Major Geffre, thank you for 

keeping me on track and your patience.  I want to thank Major Jonathan Butts and Mr. 

Juan Lopez for sparking my interest in SCADA system vulnerabilities.  Major Brian 

Stone, I appreciate you sharing your design of experiments expertise.       

 

 

         Jesse G. Wales 



vii 

Table of Contents 

Page 

Abstract .............................................................................................................................. iv 

Acknowledgments.............................................................................................................. vi 

Table of Contents .............................................................................................................. vii 

List of Figures ......................................................................................................................x 

List of Tables .................................................................................................................... xii 

I.  Introduction .....................................................................................................................1 

Background...................................................................................................................1 
Problem Statement........................................................................................................3 

Research Objectives and Deliverables .........................................................................3 
Research Approach .......................................................................................................4 

Research Scope and Assumptions ................................................................................6 
Thesis Organization ......................................................................................................7 

 

II. Literature Review ............................................................................................................8 

Alarm Management ......................................................................................................8 

Alarm Management Environment ........................................................................... 9 
Difficulties in Alarm Monitoring .......................................................................... 10 

False Alarms ......................................................................................................... 12 

Reliance and Compliance ..................................................................................... 13 

SCADA Overview ......................................................................................................15 
SCADA Communication Protocols ............................................................................18 
SCADA Security ........................................................................................................20 

Intrusion Detection .....................................................................................................22 
Information Theory ....................................................................................................24 

Shannon’s Entropy ................................................................................................ 24 
Information Entropy.............................................................................................. 25 
Joint and Conditional Entropy.............................................................................. 27 

Relative Entropy and Mutual Information ............................................................ 28 
Entropy Error Estimation ..................................................................................... 30 

Information Theory for Anomaly Detection ..............................................................31 
Classifying Data.................................................................................................... 34 

Entropy for Anomaly Detection ............................................................................ 35 
Network Traffic Anomaly Detection ..................................................................... 39 
Leak Detection ...................................................................................................... 41 

Failures of Information Theory ..................................................................................42 
Attack Scenarios .........................................................................................................43 

Summary.....................................................................................................................44 

 



viii 

III.  Methodology ...............................................................................................................45 

Introduction ................................................................................................................45 
Data Format ................................................................................................................47 
Simulated SCADA Message Traffic ..........................................................................49 
Anomaly Detection Model .........................................................................................51 

Entropy Time Series .............................................................................................. 51 

Smoothing Algorithms for Prediction ................................................................... 54 
Determining Model Parameters ........................................................................... 55 

Anomaly Detection .....................................................................................................57 
Attack Scenario Experiment .......................................................................................59 
Experiment Analysis ..................................................................................................64 

Summary.....................................................................................................................68 

 

IV.  Analysis and Results ...................................................................................................69 

Introduction ................................................................................................................69 
Data.............................................................................................................................70 

Setting Model Parameters...........................................................................................71 
Model Evaluation .......................................................................................................76 
Factorial Experiment ..................................................................................................79 

All Factors ............................................................................................................ 80 
Window Size .......................................................................................................... 81 

Attack Scenario Factors ........................................................................................ 84 
Factorial Experiment - Modified Dataset ...................................................................87 

All Factors ............................................................................................................ 87 

Window Size .......................................................................................................... 88 

Attack Scenario Factors ........................................................................................ 90 
Attack Distribution ................................................................................................ 92 

Conclusion ..................................................................................................................93 

 

V.  Conclusions ..................................................................................................................95 

Conclusions ................................................................................................................95 
Limitations ..................................................................................................................97 
Contributions ..............................................................................................................97 

Future Research ..........................................................................................................98 

 

Appendix A.  Using the Anomaly Detection Model........................................................100 

Setting Up Model with New Data ............................................................................100 
Running the Model ...................................................................................................100 

 

Appendix B:  Detailed Description of Water Treatment Dataset ....................................102 

Appendix C:  Thesis Poster..............................................................................................104 

References ........................................................................................................................105 



ix 

Vita ……………………………………………………………………………………..110 

 



x 

List of Figures 

Page 

Figure 1.  Research framework. .......................................................................................... 6 

Figure 2.  Nuclear power plant control room. (Mumaw et al., 2000:40)............................ 9 

Figure 3.  Diagram of a SCADA system.  (Shaw, 2006:4) ............................................... 16 

Figure 4.  Priority based RTU polling.  (Clarke & Reynders, 2004:33) ........................... 17 

Figure 5.  Modbus message format.  (Clarke & Reynders, 2004:47) ............................... 19 

Figure 6.  Shannon's general communication system diagram.  (Shannon, 1948:380) .... 25 

Figure 7.  Entropy results from the Kahler paper.  (Kahler, 2013:285) ............................ 36 

Figure 8.  Entropy time series and anomaly score from university data.  (Winter et al., 

2011:202) ................................................................................................................... 38 

 

Figure 9.  Entropy plotted against time for different network features from university 

network traffic data.  (Nychis et al., 2008:153) ......................................................... 39 

 

Figure 10.  Using conditional entropy for anomaly detection.  (Arackaparambil et al., 

2010:7) ....................................................................................................................... 41 

 

Figure 11.  Research framework. ...................................................................................... 45 

Figure 12.  Example Modbus Data Log.  (Simply Modbus, 2013) .................................. 47 

Figure 13.  Example of SCADA data formatted in Excel.  (Weidling, 2000) .................. 48 

Figure 14.  Entropy calculations. ...................................................................................... 53 

Figure 15.  Anomaly detection output and example of an anomaly flag. ......................... 59 

Figure 16.  Attack matrices used for alarm manipulation. ................................................ 61 

Figure 17.  Confusion matrix. ........................................................................................... 62 

Figure 18.  Confusion matrix. ........................................................................................... 72 

Figure 19.  Graph used for setting model parameters. ...................................................... 76 



xi 

Figure 20.  Prediction error against cycle for data with fewer alarms. ............................. 78 

Figure 21.  Prediction error against cycle for data with more alarms. .............................. 78 

Figure 22.  TP% values for small and large window size (WS). ...................................... 82 

Figure 23.  FP% values for small and large window size (WS). ...................................... 83 

Figure 24.  TP% values for the attack type (AT) of adding alarms (Add) and removing 

alarms (Rem). ............................................................................................................. 86 

 

Figure 25.  TP% for each window size (WS) using the modified dataset. ....................... 89 

Figure 26.  FP% for each window size using the modified dataset. ................................. 90 

Figure 27.  Effects of number of cycles (NC) and number of targets (NT) attacked for 

window size 11 using the modified dataset. ............................................................... 92 

 

Figure 28.  TP% values for the attack distribution (AD) levels of grouped (Grp), 

distributed (Dst), and increasing (Inc) attacks, using window size 4. ........................ 93 

 

Figure 29.  TP% values for the attack distribution (AD) levels of grouped (Grp), 

distributed (Dst), and increasing (Inc) attacks, using window size 11. ...................... 93 

 

Figure 30.  The 38 sensors/variables for the water treatment dataset. ............................ 102 

 



xii 

List of Tables 

Page 

Table 1.  Formatted SCADA data. .................................................................................... 49 

Table 2.  Threshold look up table. .................................................................................... 49 

Table 3.  Simulated SCADA data for creating the anomaly detection model. ................. 50 

Table 4.  Look up table for alarm thresholds. ................................................................... 51 

Table 5.  Experiment factors and levels. ........................................................................... 63 

Table 6.  TP% and FP% for different model parameters. ................................................. 75 

Table 7.  Values for the continuous factor levels.............................................................. 80 

Table 8.  TP% and FP% top significant factors, full model. ............................................ 81 

Table 9.  TP% and FP% significant treatments for window size 11................................. 84 

Table 10.   TP% and FP% significant factors, modified dataset. ...................................... 88 

Table 11.  TP% significant treatments for window size four and 11 using the modified 

data. ............................................................................................................................ 91 

 

Table 12.  Operational classes of plant state and number of samples with that state. .... 103 



1 

ANALYSIS OF SCADA SYSTEM ANOMALY DETECTION MODEL  

BASED ON INFORMATION ENTROPY 
 

 

I.  Introduction 

Background 

In the last few decades, an increasing number of supervisory control and data 

acquisition (SCADA) systems have become connected to the internet, including SCADA 

systems running critical infrastructure and major industries (Shaw, 2006:XVII-XVIII).  

This connectivity provides easy access for operations, maintenance, and monitoring, but 

creates vulnerabilities for cyber attacks.  President Obama stated in Executive Order 

13636, Improving Critical Infrastructure Cybersecurity, that the “cyber threat to critical 

infrastructure continues to grow and represents one of the most serious national security 

challenges we must confront” (Obama, 2013).  SCADA targeted attacks, such as Stuxnet, 

have shown that physical damage can occur when SCADA messages are altered and 

operators are influenced.  

SCADA operators rely on alarms to direct their attention to problem areas.  Tools 

are used to set threshold levels and filter alarms based on operator responsibilities and the 

priorities of the alarms.  A balance between too many alarms and not enough alarms is 

important.  If the operator receives too many alarms, including false alarms (such as 

when equipment is under maintenance), then they become overwhelmed or insensitive to 

the alarms and miss important problems.  The operator could miss significant issues with 

the system if too many alarms are filtered out or the proper filters are not updated (Shaw, 

2006:158-159).  An operator is susceptible to an attacker changing the distribution of 
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alarm messages and causing the same effect.  “Managing the way a SCADA system deals 

with alarms, and its impact on the operators, is an important consideration [and potential 

vulnerability]” (Shaw, 2006:156). 

There are several examples of attacks on SCADA systems and accidents resulting 

from poor alarm management by an operator.  One of the most famous attacks is Stuxnet, 

which targeted centrifuges in an Iranian nuclear enrichment facility (Denning, 2012:672).  

Stuxnet is a virus that made its way onto the Iranian SCADA system.  The cyber security 

company Semantic published a dossier on Stuxnet where they stated the objective of 

Stuxnet was to “reprogram industrial control systems (ICS) by modifying code on 

programmable logic controllers (PLCs) to make them work in a manner the attacker in-

tended and to hide those changes from the operator of the equipment” (Fallier, Murchu, 

& Chien, 2011:1).  The Semantic report described several actions and attacks performed 

by Stuxnet that are of interest to this research:  collected message traffic to observe the 

baseline of the system, hid and/or changed data that was sent to the operator, and changed 

equipment settings both overtly and covertly (Fallier et al., 2011:36,47).  Ultimately, 

Stuxnet operated undetected for over a year and may have destroyed or disrupted 

thousands of centrifuges and set back Iran’s nuclear program by 18 months (Sanger, 

2011:A1).   

An example of an accident involving SCADA operators reading alarms is the 

Enbridge Incorporated pipeline rupture and release on July 25, 2010.  According to the 

National Transportation Safety Board (NTSB) accident report, a ruptured pipe in 

Marshall, Michigan led to the release of “843,444 gallons of crude oil” that impacted 

wetlands, a creek, and a river in the area (National Transportation Safety Board, 
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2010:1,4).  It took 17 hours from the time of the rupture until the control center staff was 

notified of the rupture.  During that time: 

Enbridge’s leak detection and [SCADA] systems generated alarms consistent with 

a ruptured pipeline…the control center staff attributed the alarms to [a planned] 

shutdown and interpreted them as indications of an incompletely filled pipeline.  

(National Transportation Safety Board, 2010:xiii) 

 

Since the operators misattributed the alarms, the operators continued to make decisions 

that increased the release of oil.  This accident demonstrates the SCADA operators’ 

reliance on alarms and the importance of responding to them correctly.  

Problem Statement 

According to the National Institute of Standards and Technology Guide to 

Industrial Control Systems (ICS) Security, a possible SCADA vulnerability is having 

“false information sent to control system operators either to disguise unauthorized 

changes or to initiate inappropriate actions by system operators”, (Stouffer, Falco, & 

Scarfone, 2008:3.17).  This research addresses two questions:  1.  Can an alarm detection 

model based on information theory detect message manipulation attacks?  2.  What types 

of attack scenarios, among those tested, significantly affect the detection model’s 

performance?  

Research Objectives and Deliverables 

 There are two objectives for this research.  The first objective is to build a model 

for SCADA systems using information theory to detect anomalies caused by system 

problems and alarm status manipulation attacks.  Previous works, such as Lee and Xiang, 

have shown that different information-theoretic measures can be applied in various ways 
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for anomaly detection (Lee & Xiang, 2001).  The inputs to the model are messages from 

SCADA traffic and data on the alarm thresholds of the system.  The model formats the 

data into a form that facilitates the use of information-theoretic measures.  The model is 

used to quantify the relative information content of SCADA messages received at the 

human machine interface (HMI) from the remote terminal units (RTUs) using 

information-theoretic measures, and uses the results to determine if message frequencies 

are outside of normal operating conditions.  The goal is to evaluate the use of this 

anomaly detection model on a SCADA system.  This research evaluates the model on its 

ability to detect attacks and minimize false positive rates.  The second objective of the 

research is the analysis of the impact of different attack scenarios on the performance of 

the detection model.  A full factorial experiment is used to evaluate alarm manipulations 

including the number of alarms added, removed, and the distribution of alarm 

manipulations.  

 The deliverables include this thesis and accompanying software.  The thesis 

provides the methodology to complete the objectives and the results from applying the 

model to a publicly available water treatment plant SCADA system dataset.  The 

software deliverables include Microsoft Excel files containing the anomaly detection 

model and the attack scenario injection (using the data in a spreadsheet, not attacking a 

SCADA system).  

Research Approach 

The research began with a study of applications of information theory to discrete 

messages and anomaly detection.  Information was gathered on SCADA message 
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protocols and possible messages that are sent to the HMI from the RTUs.  Simulated data 

from a simple SCADA system was used to facilitate building a model to quantify the 

information content of SCADA messages between the RTU and HMI using message 

frequency and type.  This model uses Excel spreadsheets and macros written by the 

author to perform the necessary calculations on the data, such as formatting, converting 

sensor data to alarm messages, logarithms, and using the expectation operator.   

A selection of attack scenarios were developed to test what can or cannot be 

detected by the model.  As discussed, the Stuxnet attack and pipeline accidents showed 

the devastating impact from too many false alarms and hiding real alarms.  The attack 

scenarios varied by the number of SCADA components targeted, number of alarms added 

or removed, and the distribution of the manipulations.  A full factorial design of 

experiments was used to evaluate the significance of the attack factors.  This research 

tested which attack variables, or combinations of variables, were significant to detecting 

problems and the false alarm percentage.  

The model was applied to an open source dataset from a water treatment facility 

to demonstrate its use.  The procedure started with formatting the data in Excel so that the 

information entropy could be calculated.  Then, the model was used to create a baseline 

for the system and set the anomaly threshold.  Attack scenarios were created and applied 

to the dataset.  They were evaluated on their significance to impact the true positive and 

false positive detection percentages.  The attack scenarios covered a range of targets, 

severity, and changing rates.  The statistical analysis of the data showed how information 

entropy might be used to detect changes in a SCADA system due to an attack using 

message manipulation.  The results provide insight into the effectiveness of information 
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entropy for anomaly detection on a SCADA system and the significance of different 

types of attack scenarios.  The research framework shown in Figure 1 is a summary of the 

research approach. 

  

Figure 1.  Research framework. 

Research Scope and Assumptions 

This research focuses on SCADA messages sent from the RTUs to the HMI.  

Attacker manipulation of the messages is limited to the following: 

 Injecting alarms 

 Suppressing alarms 

This research assumes that the attacker has sufficient access to the SCADA 

network to be able to create, change, and block messages from the RTU to the HMI.  The 

research also assumes that the person using the model has access to the data to populate 

it.  Examples such as Stuxnet show that an attacker can gain access to a SCADA network 

to collect and manipulate data.   
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Thesis Organization 

 Chapter II reviews the literature concerning the focus areas of this research.  The 

focus areas include SCADA vulnerabilities, information theory, and intrusion detection.  

Chapter III provides the methodology for applying information theory and conducting the 

analysis.  This chapter describes the model used in this research.  Chapter IV describes 

the analysis and results from applying the methodology to a dataset of water treatment 

plant SCADA message traffic.  Chapter V discusses the conclusions drawn from the 

results and potential for future research in this area. 
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II. Literature Review 

 The literature review provides an introduction to alarm management and enforces 

the motivation for studying the vulnerability of message manipulation.  The research 

reviews human factors studies on operator alarm management and reactions to alarms.  A 

key focus area is how operators have the potential to be conditioned to certain responses, 

such as too many false alarms.  The literature review then gives an overview of a typical 

supervisory control and data acquisition (SCADA) system and discusses vulnerabilities 

of a cyber attack.  The research also reviews current SCADA anomaly detection 

techniques.  The concept of information theory and its use in anomaly detection and other 

relevant applications are discussed.   

Alarm Management 

 Control systems employ automated alarm management systems, which provide a 

signal to an operator when an alarm condition is met.  These systems are designed to 

improve operator performance and reduce workload.  “The control room indicators and 

alarms [are] the primary sources of information for monitoring” (Mumaw, Roth, Vicente, 

& Burns, 2000:41).  These systems are not perfect and can miss alarms or report false 

alarms (Dixon & Wickens, 2006:474).  This section reviews studies on operator 

management of alarms and the characteristics that make them susceptible to attack.  The 

focus area of this research is the vulnerability of an attacker adding alarms and/or hiding 

alarms. 
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     Alarm Management Environment 

 SCADA networks “are becoming increasingly large and complex which create 

special challenges for human operators who must monitor these networks for safe 

operation” (Su & Yurcik, 2005:1).  Nuclear power plants have complicated control rooms 

that display hundreds of indicators in different ways.  Figure 2 shows part of a control 

room where operators use computer displays, light panels, and other indicators to monitor 

the plant (Mumaw et al., 2000:40).  There are many ways to display information and 

assist the operator in performing their duties.  Guidelines and recommended practices for 

graphical displays are provided to industries that use SCADA systems (Gerard, 2005:1). 

 

Figure 2.  Nuclear power plant control room. (Mumaw et al., 2000:40) 

 Alarm management involves a balance of providing enough information to an 

operator to effectively control the system, but avoid overloading them with unnecessary 
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data.  The data is usually presented to the operator with some type of graphical display, 

which is specific to the industry and the SCADA vendor (Shaw, 2006:145).  The display 

may show the data in real time, use graphs and charts, incorporate a model of the 

processes, and can be tailored by the operator.  Audio or flashing light cues can also bring 

attention to problems (Mumaw et al., 2000:40).  Alarms are often filtered based on 

priority, operator responsibility, or to block alarms generated when equipment is being 

repair or replaced (Shaw, 2006:158-159).  The operators’ heavy reliance on alarms, and 

subsequent susceptibility to an attacker manipulating alarms, is the motivation for this 

research. 

 Human factors studies, such as the research by Wang and Liu (2009), seek to 

improve SCADA operator effectiveness by changing the human machine interface 

(HMI).  In their research, Wang and Liu study the HMI of a wastewater treatment system.  

They revealed that the operators were overwhelmed by excessive and unnecessary 

alarms.  “The original system was so designed that it could monitor the system in a very 

sensitive way and display and [record] all the alarms in detail”  (Wang & Liu, 

2009:1213).  The authors applied solutions such as changing the display of alarms to the 

operators and filtering alarms based on priority; these changes improved the performance 

of the operators.  This study shows the impact of too many alarms and problem alarms.  

The next section describes more of the issues operators encounter with managing alarms. 

     Difficulties in Alarm Monitoring 

 Mumaw, Roth, Vicente, and Burns published an article in the journal Human 

Factors (2000) where they studied the alarm management of nuclear power plant 

operators.  In this article they summarized the difficulties of alarm monitoring, “which is 
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influenced by system complexity and reliability, alarm system design, displays and 

controls design, and the design of system automation” (Mumaw et al., 2000:44).  A 

complex system could be made up of thousands of elements and “because there are so 

many interactions among components, subsystems, and instrumentation, it is difficult to 

derive the full implications of the current failures to determine what state any particular 

parameter should be in” (Mumaw et al., 2000:44).  With a large number of components, 

there may be continual alarms occurring due to failures or because some part of the 

system is under repair.  The difficulty in interpreting alarms and identifying the state of 

the system, such as the pipeline accidents, may make operators more susceptible to an 

attack involving alarm manipulation. 

 Many situations increase the difficulty in alarm monitoring.  Nuisance alarms may 

distract an operator or decrease their response to an alarm.  “For example, multiple 

alarms can appear for the same event and thereby make interpretation more difficult” 

(Mumaw et al., 2000:45).  In addition, “if a particular parameter is rapidly cycling above 

and below the alarm set point, an almost continuous stream of [alarms] is generated” 

(Mumaw et al., 2000:45).  Nuisance alarms increase the operator’s workload and force 

them to work harder to determine the important alarms.  An attacker could cause these 

situations to occur and take advantage of the increased workload on the operator. 

 There are other problem alarms in addition to nuisance alarms.  “Flooding 

alarms” are “alarms caused by routine operations or simple activities.”  These could be 

from poorly set thresholds or maintenance on the system.  “Stale alarms” are “alarms that 

[are] unsettled for [a] long time and were overlooked.”  These may be low priority alarms 

or alarms from a system problem that is no longer relevant.  “Unclear alarms” are from 
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“mis-operation [and are] caused by poor alarm design.”  Each of these alarms increases 

the workload of the operator and adds to the difficulty of determining the state of the 

system (Wang & Liu, 2009:1214).  An attacker might be able to mimic these types of 

alarms and influence the behaviour of an operator.  This research looks at an attacker 

adding these types of alarms, which could reduce the effectiveness of the operator. 

     False Alarms 

 Responding to alarms is a critical task of SCADA operators.  Alarms can indicate 

significant problems such as pipeline leaks, equipment overloading, and loss of 

availability to customers.  Due to the importance of real problems, the “system designer 

sets the threshold for an alarm so that virtually no true alarm conditions will fail to set off 

an alarm.  The result is that occasional alarms occur when no true alarm exists (a false 

alarm)” (Gerard, 2005:3).  Too many false alarms lead to trouble for the operator.  A 

safety recommendation report by the National Transportation Safety Board (NTSB) 

describes the significance of false alarms for pipeline operators: 

If a controller responds to a false leak alarm, the economic cost of shutting down 

the line is small compared with the possibility of spilling a large amount of 

product.  However, as the number of false alarms increases, so does the cost of 

responding to all of them.  Controllers may try to differentiate false alarms from 

true alarms and respond only to the latter.  As a result, they may miss a true alarm, 

increasing the severity of a product leak.  (Gerard, 2005:3) 

 

The NTSB report lists alarm management as one of the top five areas for improvement in 

pipeline SCADA systems (Gerard, 2005:1). 

 The continued presence of false alarms can lead to conditioning of the operator.  

The NTSB report describes two specific accidents in the pipeline industry resulting from 

excessive false alarms.  In these accidents, false alarms occurred repeatedly during 
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certain events.  Later, when the alarms were real, the operators assumed they were the 

same false alarms they had seen in the past.  (Gerard, 2005:3)  An attacker also may be 

able to condition an operator to change their behavior by introducing false alarms before 

a real system problem is generated.  The next section continues the discussion of alarms 

and false alarms. 

     Reliance and Compliance 

 Reliance and compliance are two important concepts concerning how operators 

interact with automated alarm systems.  Reliance is a measure of how much an operator 

trusts the system to detect problems and report alarms.  When an operator is reliant on the 

system, they do not have to spend their time checking that problems are caught; this 

allows them to spend their time on concurrent activities.  Compliance refers to how the 

operator responds when notified of an alarm.  When an operator is compliant, they give 

immediate attention to every alarm and take appropriate actions.  Changes in alarm 

detection rate and false alarm rate can affect an operator’s reliance and compliance of the 

system.  (Dixon & Wickens, 2006:475)   

 In a study looking at automation reliability in unmanned aerial vehicle (UAV) 

control, Dixon and Wickens state that “false alarms are well known to cause annoyance, 

to lead to unnecessary evasive actions, and, in the worst-case scenario, to lead to 

sufficient distrust of the automated system that true alarms are ignored – the “cry wolf” 

syndrome” (2006:475).  False alarms influence operators’ compliance.  Too many false 

alarms and the operator may distrust the system and take longer to respond to an alarm or 

not respond at all (Dixon & Wickens, 2006:476).  This concept is a primary reason that 

operators are susceptible to having their behaviors affected by message manipulation. 
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 Reliance can also be impacted by message manipulation.  First, a highly reliable 

system can lead to an operator fully trusting the automated alarm detection and misses 

could occur; an alarm event could occur without the alarm detection system reporting it.  

If an operator is used to working with a reliable system, they are susceptible to the system 

missing an alarm.  As the reliability of the system to catching alarms decreases, the 

operator involvement increases.  If the automated system does not detect some true 

alarms then the operator must take time away from concurrent tasks to monitor the raw 

data.  (Dixon & Wickens, 2006:475)  It may be possible for an attacker to create one of 

these situations by adding false alarms to the system or hiding true alarms. 

 Dixon and Wickens conducted a series of experiments on automated alarm 

systems using humans navigating UAVs with a simulator (2006:476).  The experiments 

evaluated how well the operators performed tasks and monitored for system failures 

(SFs).  Dixon and Wickens (2006) changed the reliability of the automated alarm 

notification system, which they called imperfect automation.  The baseline for the 

experiments was with no alarm aid.  They found that “false alarms hurt the system-

monitoring task by reducing SF detection rates and increasing SF detection times as 

compared with baseline” (Dixon & Wickens, 2006:480).  Their analysis of the 

correlations showed “a strong effect of miss rate on reliance (r = .67), as participants 

became less trusting of the automation to alert them if a failure occurred and...allocated 

more attention to monitoring the raw data at the expense of two concurrent tasks” (Dixon 

& Wickens, 2006:484-485).  This also had the effect that operators caught more of the 

misses since they were watching the raw data closer.  With a correlation of r = .49, the 

authors found that increased false alarms decreased compliance, “reflecting the “cry 
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wolf” phenomenon” (Dixon & Wickens, 2006:485).  An important vulnerability 

identified by Dixon and Wickens is that “it appears that a false-alarm prone system may 

leave the operator somewhat less inclined to pay any attention to the entire automated 

domain, whether it be its alerting signal or the raw data contained within” (Dixon & 

Wickens, 2006:485).  Similarly, operators may be susceptible to changing their behavior 

based on an attacker adding false alarms to the system.  

SCADA Overview 

 “[SCADA] systems are used to monitor and remotely control critical industrial 

processes, such as gas pipelines, electric power transmission, and potable water 

distribution/delivery” (Shaw, 2006:3).  Since the 1960s, the basic components of a 

SCADA system, shown in Figure 3, are the central operator computer, communications 

infrastructure, remote terminal units (RTUs), and plant equipment.  The central operator 

computer, also known as the SCADA master or host, displays information and receives 

commands from the operator via the human machine interface (HMI).  Messages and 

commands are sent over the communications infrastructure that can consist of one or 

several different mediums such as telephone lines, fiber optics, cellular, wireless systems, 

and more recently the internet.  These messages use either a proprietary or standardized 

protocol.  The RTUs are the interface between the communications infrastructure and the 

plant equipment.  Programmable logic controllers (PLCs), which are essentially RTUs 

with microprocessors that can perform calculations and programming tasks, may 

interface with or replace the RTUs (Shaw, 2006:365).  The plant equipment consists of 
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sensors and control equipment, such as actuators, valves, and switches; these are referred 

to as slave devices.  (Shaw, 2006:3-5)   

 

Figure 3.  Diagram of a SCADA system.  (Shaw, 2006:4) 

A SCADA system operates in real time, providing messages and control 

capability to an operator.  The messages consist of equipment/sensor measurements and 

alarms when something is outside normal operating thresholds.  The SCADA master 

repeatedly polls the RTUs for information on the industrial equipment (Shaw, 2006:5).  

The operator receives status messages and alarms on displays and/or print outs; he or she 

then makes decisions on what changes to make or to do nothing.  The alarms can be 

filtered based on the status of the system, such as equipment being replaced or 

maintained (Shaw, 2006:158). 
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There are a few different techniques for communication in SCADA systems; this 

research looks at the polled approach.  “The master is in total control of the 

communication system and makes regular (repetitive) requests for data to be transferred 

to and from each one of a number of slaves” (Clarke & Reynders, 2004:31).  Polling is 

set up as a full cycle through all the RTUs, one at a time, or as a “high and normal 

priority arrangement” as shown in Figure 4 (Clarke & Reynders, 2004:33).  Full cycle 

polling was used in this research. 

 
 

Figure 4.  Priority based RTU polling.  (Clarke & Reynders, 2004:33) 
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SCADA Communication Protocols 

 Most modern SCADA systems communicate using well-developed standard 

protocols.  The proprietary and unique systems of the past were too expensive to maintain 

and update.  Today, large amounts of data are displayed and stored from thousands of 

sensors located in geographically separated areas.  Standardized protocols allow for 

easier installation and maintenance, and allow a company to purchase products from a 

variety of vendors.  (Clarke & Reynders, 2004:14-15)  The methodology for this research 

can be tailored to many different SCADA protocols, but this research focuses on 

Modbus. 

 According to a Control Engineering survey, “Modbus is the most popular 

industrial protocol being used today...it is simple, inexpensive, universal, and easy to use” 

(McConahey, 2012).  Modbus has been around for over 30 years and is broadly used by 

SCADA systems owners and equipment makers (Clarke & Reynders, 2004:45).  This 

research is interested in the messages sent from a slave device to the master.  Modbus has 

a simple format for these messages.   

 The Modbus protocol is framed around the SCADA master communicating with 

slave devices.  The slave device is made up of “four different data types:  coils, discrete 

inputs, input registers, and holding registers” (Clarke & Reynders, 2004:48).  Coils are 

binary circuits which designate if something is ON/OFF or OPEN/CLOSED.  The input 

data types are for receiving commands from the master.  The holding registers (registers) 

contain the value of a reading such as temperature and pressure.  The status of coils and 

values of registers are the data that set off alarms for the SCADA operator, which is the 

focus of this research.  
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 “A transaction consists of a single request from the host to a specific secondary 

device and a single response from that device back to the host.  Both of these messages 

are formatted as Modbus message frames…”, as shown in Figure 5 (Clarke & Reynders, 

2004:47).  The bytes are in hexadecimal format for each field.   

 

Figure 5.  Modbus message format.  (Clarke & Reynders, 2004:47) 

 

 The Address Field designates which controller (slave device) the message 

concerns:  both outgoing messages from the master and incoming responses from a slave 

device.  The slave device can take on an address identifier between 1 and 247, though 

most SCADA systems use only a fraction of these.  The Function Field specifies the 

function to be performed by the slave device.  There are 10 typical functions that perform 

things such as sending commands, reading the status of coils, and reading registers.  The 

scope of this research includes function codes 1 and 3.  Function code 1, Read Coil 

Status, “allows the host to obtain the ON/OFF status of one or more logic coils in the 

target device” (Clarke & Reynders, 2004:49).  The HMI generates an alarm if a coil 

status is in the wrong position.  Function code 3, Read Holding Register, “allows the host 

to obtain the contents of one or more holding registers in the target device” (Clarke & 

Reynders, 2004:50).  The HMI generates an alarm if the value of the register is outside 

set thresholds.  The Data Field varies based on the function of the message.  Requests 

from the host contain data about the particular function such as which coils or registers 
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the message concerns.  The Error Check Field contains the data for error checking the 

message to assure that “devices do not react to messages that may have been changed 

during the transmission” (Clarke & Reynders, 2004:47).  Chapter III provides more detail 

on Modbus messages, including formatting the hexadecimal messages in the data log into 

a more useful form. 

SCADA Security 

 SCADA systems began as isolated systems running proprietary software and 

custom made hardware.  These systems are shifting to standard hardware, software, and 

communication protocols; they are also incorporating information technology (IT) 

solutions.  A dedicated attacker can learn essentially everything they need to know about 

a system to perform an attack similar to the ones described in this research due to the 

increasing use of standardized protocols for SCADA systems, software that often runs on 

standard Widows or Unix based systems, and the availability of SCADA hardware and 

software for anyone to purchase (Shaw, 2006:241-242).  Using standardized assets and 

protocols lowers purchase and maintenance costs and increases efficiency, but it 

“increases the possibility of cyber security vulnerabilities and incidents” (Igure, Laughter, 

& Williams, 2006:498; Stouffer et al., 2008:1).   

 In the past, SCADA systems were often isolated and may have required physical 

access.  Today many systems have connections to the internet and hackers.  The attacker 

could be a current or former insider, or someone that has gained access to the system.  

Insider threats are high risk due to their extensive knowledge and access to the system; 
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they may also be targets by outside threat agents for bribing or stealing their knowledge 

and access.  (Shaw, 2006:239-241)   

 This research focuses on the vulnerability of an attacker changing data sent to the 

SCADA master, thereby influencing the actions of a SCADA operator.  This is an 

important vulnerability because “it is primarily the system operators who interact with the 

system and use the system to monitor and control the target process and field equipment” 

(Shaw, 2006:137).  Due to the way that SCADA systems communicate, it is not difficult 

for an attacker to emulate message traffic.  This risk is compounded because most 

equipment does not perform checks to verify where the messages originated (Shaw, 

2006:60-61).  An attack called Man-in-the-Middle can occur, whereby an attacker can 

intercept and inject messages and/or commands from one part of the system to another.  

In this attack, the messages appear to be from a legitimate source, though an attacker has 

the control.  “The attacker may be able to cause invalid data to be displayed on a console 

or create invalid commands or alarm messages” (U.S. Department of Homeland Security, 

2011:33). 

 SCADA system owners (or an attacker) have the capability to collect the message 

traffic for the model defined in this research by using a packet sniffer.  A packet sniffer is 

a device or program that can collect and save message traffic going through a specific 

place in the network.  One use of a packet sniffer is analyzing message traffic, such as 

collecting statistics on message types and frequencies.  (Jung, Song, & Kim, 2008:78-79)  

Legitimate commercial companies develop packet sniffers for network security.  Chapter 

III also describes the capabilities of commercially available software to log messages. 
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Intrusion Detection 

 Dorothy E. Denning described a model for intrusion detection in her highly cited 

1986 paper An Intrusion-Detection Model (Denning, 1986).  Denning’s “model is based 

on the hypothesis that exploitation of a system's vulnerabilities involves abnormal use of 

the system; therefore, security violations could be detected from abnormal patterns of 

system usage” (Denning, 1987:222).  She also discussed how “security violations can be 

detected by monitoring a system's audit records for abnormal patterns of system usage” 

(Denning, 1987:222).  This research uses this concept of intrusion detection. 

 Intrusion detection systems (IDS) fall into two categories:  signature detection and 

anomaly detection.  Signature detection works by scanning the network and looking for 

characteristics matching previous intrusions of the system.  With properly updated 

libraries of signatures, signature detection can achieve high detection rates and low false 

alarm rates.  Attackers can thwart signature detection by using new techniques or new 

variants of existing techniques.  Anomaly detection does not look for signatures but 

instead watches for deviations from normal operations.  It uses statistics gathered from 

the usual behavior of the system and identifies when behavior is outside certain 

thresholds.  Anomaly detection has the possibility of catching new attacks, but its 

performance is a balance of increasing the sensitivity to false alarms and decreasing 

missed detections.  (Zhu & Sastry, 2010:82)  The model in this research, which is 

described in Chapter III and analyzed in Chapter IV, used anomaly detection and not 

signature detection. 

 Denning provides a methodology for anomaly detection using a mean and 

standard deviation statistical model.  This model defines an event as abnormal if it falls a 
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predefined number of standard deviations outside the mean of the baseline state.  If   is 

the number of standard deviations, Chebyshev’s inequality states that “the probability of 

a value falling outside this interval is at most     ; for    , for example, it is at most 

0.0625” (Denning, 1987:225). 

 Zhu and Sastry summarize the issue of security on SCADA systems by stating:  

“SCADA systems were designed without cyber security in mind and hence the problem 

of how to modify conventional Information Technology (IT) intrusion detection 

techniques to suit the needs of SCADA is a big challenge” (Zhu & Sastry, 2010:77).  The 

authors evaluate several IDS’s for use on SCADA systems with varying results.  The 

authors concluded that one of the best IDS’s evaluated involved using the Modbus/TCP 

protocol.  The Modbus protocol is “the most widely used application layer protocol for 

communication between control station to field devices in industrial networks” (Zhu & 

Sastry, 2010:83).  The IDS evaluated by Zhu and Sastry was a signature-based IDS.  

Though the research of this thesis involved anomaly detection instead of signature-based 

detection, the author’s reasons for using Modbus still apply.   

 There are other examples of anomaly-based detection on SCADA systems.  Yang, 

Usynin, and Hines (2006) used a form of anomaly detection called pattern matching.  It 

uses normal system traffic to “build a traffic and usage profile for a given network...[and] 

when new traffic data fails to fit within a predetermined confidence interval of the stored 

profiles, then an alarm is triggered” (Yang, Usynin, and Hines, 2006:13).  The authors 

state that this kind of model is “is based on the hypothesis that security violations should 

change the system usage and these changes could be detected” (Yang et al., 2006:13).   
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Information Theory 

“Information is the resolution of uncertainty.” 

    - Claude Shannon 

 Information theory, as developed by Claude Shannon, describes the “fundamental 

laws of data compression and transmission” and is a “unifying theory with profound 

intersections with Probability, Statistics, Computer Science, and other fields...” (Verdu, 

1998:2057).  This section outlines many of the key concepts of information theory and 

describes some of its applications outside the fields of compression and transmission.  

The emphasis is on applications relevant to anomaly detection.  Areas where the use of 

information theory has failed are also discussed. 

     Shannon’s Entropy 

 In 1948, C. E. Shannon wrote a paper in The Bell System Technical Journal titled 

A Mathematical Theory of Communication, which outlined a “measure of the information 

produced” from a set of messages out of a finite set of possible messages (Shannon, 

1948:379).  This section outlines the information theory concepts and metrics developed 

by Shannon that are relevant to this research.  These include bits (binary digits) as a unit 

of measure and the entropy of a message source.  The application of these concepts 

involves a finite number of discrete messages.   

 Shannon defined a general communication system as consisting of five pieces:  

information source, transmitter, channel, receiver, and destination.  The information 

source is the origin of the information that goes into the message.  The transmitter 

transforms the message into a format for sending over the channel.  The channel is the 

medium for sending the message.  The receiver converts the signal sent over the channel 
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back into a readable message.  The destination is the intended recipient of the 

information.  Figure 6 shows a diagram of this communication system.  (Shannon, 

1948:380-381)  Noise can occur at any point in the transmission and may cause the 

message at the destination to be different than the message sent from the information 

source (Shannon, 1948:398). 

 

Figure 6.  Shannon's general communication system diagram.  (Shannon, 1948:380) 

     Information Entropy 

 In the book Elements of Information Theory, Cover and Thomas define entropy 

as “a measure of the uncertainty of a random variable”; this measure involves “a discrete 

random variable with alphabet   and probability mass function     ” (Cover & Thomas, 

2006:13).  Here,   is the set of possible messages sent from the information source to the 

destination.  Entropy describes how much information is gained from some source.  If a 

source always sends the same message then no information is gained and the entropy is 

equal to zero.  If a source is equally likely to send any of its possible messages, then the 

amount of information is high and depends on the number of possible messages; this is 

maximum entropy. 

 The simplest situation is looking at the maximum entropy, which is the total 

amount of information possible from an information source.  This depends on the number 

of possible message types and occurs when the message possibilities are all equally 
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likely.  The entropy,  , for a source with   equally probable message types (Shannon, 

1948:379-380) is  

         (1)  

where the log is in base 2 for units of bits (for the rest of this document, any log is 

implied to be base 2).  It is assumed that        .  For example, a fair coin has two 

(   ) equally likely outcomes:  heads and tails.  The entropy of a single fair coin is:  

          . 

 In most applications, including this research, each message is not equally likely.  

In this case, the entropy is the sum of the information from each individual message, 

weighted by its probability.  Using the random variable X for the message type, the 

entropy is  

                

   

  (2)  

where      is the probability that   equals   (Cover & Thomas, 2006:14).  “Note that the 

entropy...does not depend on the actual values taken by the random variable  , but only 

on the probabilities” (Cover & Thomas, 2006:14).  In other words, the information from a 

communication source depends on the likelihood of each message.  Here, the negative 

symbol comes from changing 
 

 
 to     :                   

 

 
          

(Cover & Thomas, 2006:14).  Another way to write entropy is by using the expectation 

operator,  , for some function     :                       (Cover & Thomas, 

2006:14).  Entropy (Cover & Thomas, 2006:14) now becomes 

                (3)  
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 Using the coin example, an unfair coin with a 0.25 probability of heads and a 0.75 

probability of tails is:                                           .  This is less 

entropy than the fair coin, which had 1 bit.  Another way to describe entropy is the 

weighted sum of the information for each possible outcome.  Using the unfair coin 

example, most of the time the coin flip outcome is going to be tails.  Since this is 

expected, less information is gained.  Some of the time the coin will show a heads; this is 

less expected and more information is gained.  The entropy of the coin weights both 

outcomes on their probability of occurring.  The fact that entropy is independent of the 

content of the messages is key to developing the methodology of this research.  The 

content of specific messages could be complicated, but using only the frequencies of the 

messages allows the information to be quantified and direct comparisons between states 

of the system can be made.  In a SCADA system, one can calculate the entropy of the 

system based on the number of messages that are alarms.  As discussed later, several 

researchers, such as Lee and Xiang (2001), have used entropy for anomaly detection. 

     Joint and Conditional Entropy 

 When two discrete random variables are of interest then it is useful to calculate 

the joint entropy and conditional entropy.  For example, consider two random variables   

and  , where   is the number of alarms in a SCADA system over some period of time 

and   is the number of alarms out of the last 10 messages.  For these random variables   

and  , with joint distribution       , the joint entropy (Cover & Thomas, 2006:16-17) is 

                       (4)  

This is another form of calculating the entropy of a source, except now two outcomes are 

of interest.  Here, joint entropy uses the probability of     and    .  In the SCADA 
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example,        is the joint entropy of the total number of alarms and the number of 

alarms in the last 10 messages. 

 The conditional entropy of two random variables (Cover & Thomas, 2006:17) 

with the probability of   given   of        is  

                       (5)  

where the expectation operator sums over all values of the joint distribution.  Again using 

the SCADA example, it may be useful to know the entropy for the alarms in the system 

based on knowing the outcome of the last 10 alarms.  The chain rule,  

                     (6)  

is a useful theorem which states the joint entropy in terms of the entropy of one random 

variable and the conditional entropy (Cover & Thomas, 2006:17).  Discussed later, 

Arackaparambil, Bratus, Brody, and Shubina (2010) used conditional entropy for 

anomaly detection in network traffic.      

     Relative Entropy and Mutual Information 

 Two other information-theoretic concepts involving more than one random 

variable are relative entropy and mutual information.  Relative entropy describes the 

distance between two distributions, represented by        .  It “is a measure of the 

inefficiency of assuming that the distribution is   when the true distribution is  ” (Cover 

& Thomas, 2006:19).  For example, if the wrong distribution is used, then the 

information source is described by the entropy of the wrong distribution plus the relative 

entropy (Cover & Thomas, 2006:19).   Relative entropy (Cover & Thomas, 2006:54) is   
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(7)  

A SCADA example of using relative entropy is comparing the system from one day to 

the next.  Large changes in the two day’s distributions may indicate an anomaly has 

occurred.  Relative entropy “is known under a variety of names, including the Kullback-

Leibler distance, cross entropy, information divergence, and information for 

discrimination” (Cover & Thomas, 2006:54). 

 Conditional relative entropy can also be calculated, which is the same as relative 

entropy except both distributions are now conditioned on some event.  It is “the average 

of the relative entropies between the conditional probability mass functions        and 

       averaged over the probability mass function     ” (Cover & Thomas, 2006:24), 

which is    

 
                                 

      

      
      

 

            
      

      
    

(8)  

A SCADA example of relative conditional entropy is comparing two days’ alarm 

message distributions based on the number of alarms from the previous day.  This may 

help detect how much the system is changing and help determine if an anomaly has 

occurred.  

 The mutual information,        (Cover & Thomas, 2006:21), can be written in 

terms of marginal and joint entropies, and marginal and conditional entropies: 



30 

                         

             

               

(9)  

It is “the reduction in the uncertainty of   due to the knowledge of  ” (Cover & Thomas, 

2006:21).  Mutual information measures how much information is gained for some event, 

if some other event is already known.  For example, mutual information can describe how 

much the entropy of a SCADA system changes based on knowing what occurred the 

previous day.  Mutual information was used by Xia, Qu, Hariri, and Yousif (2005) for 

classifying data, as discussed later. 

          Entropy Error Estimation 

 Estimating the errors in calculated entropies is useful, especially when dealing 

with smaller sample sizes.  Mark Roulston published a paper in Physica D where he 

derived and evaluated formulas for entropy errors based on the works of Basharin (1959), 

Harris (1975), and Herzel and Grosse (1997).  The error in the entropy is calculated from 

observed entropies,     , from a set of data containing   samples, with   different 

states, where each sample is in state   (        ).  The predicted range of the true 

entropy of the system is 

 
           

    

  
     

     
 

 
                      

 

   

   

(10)  
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where    is the number of states with non-zero probabilities and    is the observed 

distribution for state  ;    is the standard error of the observed entropy (Roulston, 

1999:285-286,293). 

 The error for mutual information is  

 
           

  
    

     
   

  
     

     
 

 
        

       
              

          

  

   

  

   

   

(11)  

for distributions   and  , where   
      

  
    and   

      
  
     (Roulston, 1999:293).  

These measures quantify the error in determining the true system entropy and mutual 

information, based on the variance of observed messages.  These expressions may give 

insight into what a system owner considers an allowable range of the entropy of the 

system.  If the range is large, the system may be vulnerable to missing attacks that do not 

exceed the set entropy range. 

Information Theory for Anomaly Detection 

 The use of information theory for anomaly detection is outlined in the work by 

Lee and Xiang, where they explored the use of “several information-theoretic measures, 

namely, entropy, conditional entropy, relative conditional entropy, information gain, and 

information cost for anomaly detection” (Lee & Xiang, 2001:130).  They define how 

these measures can be used for anomaly detection and then apply them to different 

datasets.  Each of these, except for information cost, is discussed in this section.  Lee and 

Xiang define information cost as “the average time for processing an audit record and 
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checking against the detection model” (Lee & Xiang, 2001:133).  This concerns the 

speed of the model when real-time analysis is needed and is outside the scope of this 

research. 

 The first information theory anomaly detection method described by Lee and 

Xiang is entropy, as defined in equation (2).  Entropy can be used “as a measure of the 

regularity of the audit data” by representing “unique records” as a “class”.  The authors 

continue by stating that entropy as an anomaly detection tool is best used for data with 

smaller entropy due to higher regularity; an “anomaly detection model constructed using 

dataset with smaller entropy will likely be simpler and have better detection 

performance.”  (Lee & Xiang, 2001:131)  This method may be successful for a SCADA 

system using Modbus due to the periodic polling of the slave devices.  The SCADA 

messages can be put into classes of alarm or not an alarm. 

 Another method is using conditional entropy, as defined in equation (5).  

Conditional entropy describes the amount of uncertainty remaining when an event has 

been observed, such as a subset of the audit events.  The authors state that conditional 

entropy is useful “because of the temporal nature of user, program, and network 

activities, we need to measure the temporal or sequential characteristic of audit data” 

(Lee & Xiang, 2001:131).  Lee and Xiang state that conditional entropy is useful “as a 

measure of regularity of sequential dependencies...[and] the smaller the conditional 

entropy, the better” (Lee & Xiang, 2001:132).  Systems with higher conditional entropy 

are harder to model.  The usefulness of conditional entropy for SCADA systems depends 

on the regularity of alarms over time. 
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 Lee and Xiang discuss how relative entropy, defined in equation (7), can be used 

to compare two distributions from the same event list.  They provide an example 

comparing test data to training data.  “Relative entropy measures the distance of the 

regularities between two datasets” (Lee & Xiang, 2001:132).  When conditional entropy 

is used on the dataset, relative conditional entropy, defined in equation (8), calculates the 

distance between two datasets.  The authors state that smaller entropy is better for both of 

these methods.  Relative entropy may give insight into the impact of message 

manipulation in a SCADA system.  Anomalies may be detected if the entropy of the 

system is compared day by day (or other time period), based on the entropy of the 

previous day.  It is a way to possibly detect changes in the system due to an attack (or 

other anomalous event). 

 Information gain is also discussed as an information theory method for anomaly 

detection by Lee and Xiang.  This is similar to mutual information, as defined in equation 

(9).  Information gain is “the reduction of entropy when the dataset is partitioned 

according to the feature values” and can be used when “the records are defined by a set of 

features and each record belongs to a class.”  Information gain of an attribute   of dataset 

  is  

 
                

    

   
     

           

 (12)  

where “          is the set of possible values of   and    is the subset of   where   

has value  ” (Lee & Xiang, 2001:132).  Information gain could be used for a system if 

the message sequence possibilities are grouped into classes.  The next section describes 

examples of using information theory to classify data for anomaly detection. 
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     Classifying Data   

 Some intrusion detection methods use information theory as a tool to classify 

data.  Often, there is too much data to process in real time and a technique is required to 

identify when further analysis is needed.  This is also true for SCADA communications.  

Xia, Qu, Hariri, and Yousif published an anomaly intrusion detection system (IDS) for a 

network, which used “information theory to filter the traffic data and thus reduce the 

complexity...[and] identify the most relevant features” (Xia, Qu, Hariri, & Yousif, 

2005:11, 12).  Specifically, they used mutual information between two random variables.  

Two of the reasons they chose this method were because mutual information “measures 

general statistical dependence between variables” and it “is invariant to monotonic 

transformations performed on the variables” (Xia et al., 2005:12).  The features included 

things such as protocol_type, service, and logged_in.  They applied mutual information, 

equation (9), to calculate the amount the uncertainty in the normal/abnormal decision 

variable was reduced when each feature was used.  Xia et al. chose the features with the 

largest amount of mutual information, allowing them to narrow the features of interest 

from 41 to four.  This reduced the amount of data analyzed by their IDS and allowed it to 

run in real time.  The application of information theory also improved the detection rate 

and lowered the false alarm rate (Xia et al., 2005:16). 

 Wang, Zhang, Guo, and Li used entropy as a “classification method which can 

divide Internet traffic into different content types (including Text, Picture, Audio, 

Video,...)” in real-time for network management (Wang, Zhang, Guo, & Li, 2011:45, 51).  

Their work showed that traffic can be broken down into finite elements.  They looked at 

each byte in a file and computed the entropy of the entire file.  For their analysis, they 
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used the “standardized Shannon entropy, defined as       , where the normalized 

factor is the logarithm of [m = total number of items]” (Wang et al., 2011:46).  Wang et 

al. went a step further by grouping consecutive bytes into an arbitrary group size  , and 

found “the entropy of the given file over all possible k consecutive bytes” (Wang et al., 

2011:46).  The authors describe a simple example of this method: 

... a file is drawn from a set of n (n = 3) different items {a,b,c}.  Let the file M (M 

= < a,a,a,a,b,b,c >) be the target file under analysis.  For instance, we can treat 

every three continuous bytes as an element and the new sequence of M is < 

aaa,aaa,aab,abb,bbc >.  In our example, the total number of items m = 2 + 1 + 1 + 

1 = 5, and the entropy H(X) = −(2/5)log(2/5) − 3 × (1/5)log(1/5) = 1.922.  It often 

would be turned into standardized Shannon entropy, and the final result of 

standardized entropy is 1.922/log5 = 0.828.  (Wang et al., 2011:46)  

 

 The methodology of Wang et al. was to apply their model to a training set of data 

and use those results on test data.  They improved the speed of the model by using a 

“partial file space” instead of the entire file.  The work of Wang et al. shows an example 

of partitioning a large amount of data into finite groups for calculating entropy.  Their 

approach using partial files may be useful when computing speed is an issue or in cases 

of extreme amounts of traffic.   

     Entropy for Anomaly Detection 

 Shannon’s information entropy has been used for intrusion detection in a SCADA 

system.  Benjamin Kahler wrote a paper concerning SCADA system intrusion detection 

using graph theory (Kahler, 2013).  In this paper he describes a graph-based IDS that 

incorporates information entropy.  Kahler’s approach builds an adjacency matrix for 

nodes in a SCADA system from message traffic.  A baseline adjacency matrix is created 

by collecting data from normal operations.  The entropy equation, (2), is then applied to 

calculate the entropy for each node in the adjacency matrix (Kahler, 2013:284).  The 
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network is then monitored for new node connections and any changes in entropy are 

compared to a threshold of the baseline entropy.  “If the new entropy value extends the 

threshold, an alarm is triggered” (Kahler, 2013:285).  Kahler tested his approach using a 

virtual network of 15 machines and used an internal port scan attack on one of those 

machines.  Figure 7 shows a graph of the entropy for the nodes in the network; it shows 

the baseline (standard) entropy and the entropy for the attack scenario (case 1).  The 

outlier due to the network attack on ws-2 is apparent.  (Kahler, 2013:285)  

 

Figure 7.  Entropy results from the Kahler paper.  (Kahler, 2013:285) 

 Building on the work of Lakhina, Crovella, and Diot (2005) and Wagner and 

Plattner (2005), Winter, Lampesberger, Zeilinger, and Hermann proposed “network 

entropy time series...to reduce high-dimensional network traffic to a single metric 

describing the dispersion or “chaos” inherent to network traffic” (Winter, Lampesberger, 

Zeilinger, & Hermann, 2011:194).  Their detection algorithm looks for an “abrupt 

change” in network flows, which is “an unexpectedly high difference between two 

measurement intervals” that exceeds a defined threshold (Winter et al., 2011:194).  

Winter et al. created a detection algorithm focusing on network flows (data on internet 
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protocol addresses and protocol numbers) because it involves less data than the message 

content, is easily collected, and can be processed faster.   

 Wagner and Plattner discussed the tradeoffs of interval length.  They stated that 

“short intervals give fast observation, but [have] sensitivity to short-term effects...longer 

intervals smoothen out the resulting graphs, but cause a longer reporting latency” 

(Wagner & Plattner, 2005:174).  The tradeoffs are balanced using a commonly used 

technique called a sliding widow.  Here, a window width of time is shifted and 

overlapped with the previous window. 

 Winter et al. calculated the entropy of five flow attributes using equation (7) and a 

sliding window approach.  “In order to make the result of the entropy analysis easier to 

interpret, [the authors] normalize it to the interval [0, 1] by using the normalized entropy” 

(Winter et al., 2011:196): 

 
   

 

    
 

 

    
 (13)  

Using the sliding window approach, they calculated the entropy over a five minute time 

period, with four minutes overlapping the previous time period.  A “simple exponential 

smoothing [(SES)]...algorithm is used to smooth time series as well as to conduct short-

term predictions” (Winter et al., 2011:197).  The SES is defined in detail in Chapter III. 

 

The basic idea for detecting abrupt changes is to continuously conduct short-term 

predictions and determine the difference between the prediction and the actual 

measurement.  The higher the difference, the more unexpected and hence abrupt 

the change is.  (Winter et al., 2011:197) 

 

The algorithm used by the authors does not take into account “trends” or “seasonal 

components”.  This choice was made due to the short measurement interval (one minute) 
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and a cycle of only one day. (Winter et al., 2011:197)  The authors used a single anomaly 

score for their anomaly detection system.  The anomaly detection score is a weighted sum 

of the errors from the predicted versus actual entropy values, for all five flow attributes.  

A threshold for anomalies is set and an alarm is raised if the threshold is busted.  (Winter 

et al., 2011:198-199) 

 An example of the results from Winter et al. is shown in Figure 8.  It shows a day 

of data from a university network with injected anomalies.  The shaded areas A and B are 

events which triggered the threshold alarm using the collected data alone.  C and D are 

injected anomalies which also triggered an alarm.  (Winter et al., 2011:202) 

 

Figure 8.  Entropy time series and anomaly score from university data.  (Winter et 

al., 2011:202) 

  

 The sliding window approach has potential vulnerabilities.  A small scale attack 

could be used to avoid breaching the anomaly threshold.  Winter et al. stated that the 

detection algorithm could also be overcome if an attacker could “launch an attack in a 

slow but continuously increasing way to “stay under the radar” of [the] algorithm” 

(Winter et al., 2011:203).  Attacks that go undetected could cause problems to a SCADA 

system such as blocking alarms sent to the HMI or adding false alarms that cause the 

operator to distrust the alarm detection system.  The authors stated that slow developing 
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large-scale attacks could be counteracted by adjusting the time scale to a larger range.  

This type of attack was evaluated during this research in Chapter IV. 

      Network Traffic Anomaly Detection 

 Nychis, Sekar, Andersen, Kim and Zhang analyzed different techniques which 

used information theory measures for anomaly detection of computer network traffic.  

They stated:  “Entropy-based approaches for anomaly detection are appealing since they 

provide more fine-grained insights than traditional traffic volume analysis” (Nychis, 

Sekar, Andersen, Kim, & Zhang, 2008:151).  Similar to Winter et al., the authors used a 

dataset of university network traffic and calculated the entropy for different features.  To 

directly compare the entropies using different network features, Nychis et al. normalized 

the entropies using equation (13).  Figure 9 shows an example of their analysis; the 

entropy for five minute “epochs” is plotted over time for different network features 

(Nychis et al., 2008:153).  The graph also shows the traffic volume and the letters at the 

top indicate different anomalous events, some were detected and others were missed. 

 
 

Figure 9.  Entropy plotted against time for different network features from 

university network traffic data.  (Nychis et al., 2008:153) 

 

 The work of Nychis et al. discussed lessons learned for performing traffic 

anomaly detection using entropy:  “select traffic distributions that complement one 
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another and provide different views into the underlying traffic structure” (2008:155) and 

“using time-series anomaly detection on the correlation scores can expose new anomalies 

that do not manifest in the raw time-series” (2008:152).  These results have the 

possibility of being generalized to other anomaly detection applications. 

 Arackaparambil, Bratus, Brody, and Shubina use an algorithm which calculates 

conditional entropy for anomaly detection in network traffic.  They use entropy because it 

is a “statistic that measures the variability of the feature under consideration...[and] 

anomalous activity in network traffic can be captured by detecting changes in this 

variability” (Arackaparambil, Bratus, Brody, & Shubina, 2010:1).  The authors make the 

case for conditional entropy because it is not easy to determine a baseline “normal” for a 

system and an attacker could try to imitate the current system profile and slowly make 

changes to avoid detection by an IDS.  Conditional entropy makes it more difficult for an 

attacker to mask their actions because “maintaining dependencies between features while 

at the same time carrying out an attack is harder than just maintaining the distribution of 

features independently” (Arackaparambil et al., 2010:2).   

 Arackaparambil et al. applied conditional entropy to a dataset of 802.11 wireless 

link layer headers collected at Dartmouth College.  The features used for conditioning 

were the source MAC address, frame length, and duration/ID.  Since they were using 

different distributions to calculate conditional entropy, the authors normalized the 

entropy values “in order to allow for comparisons of these values between different pairs 

of features” (Arackaparambil et al., 2010:4). 

 One of the methods the authors used for anomaly detection was plotting entropy 

deviations from baseline over time.  Figure 10 shows the authors’ application of 
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conditional entropy; here X is the frame length and Y is an address field (Arackaparambil 

et al., 2010:7).  The large deviation in entropy at around 18:30 is from an attack on the 

network by the authors.  Arackaparambil et al. demonstrated anomaly detection using 

conditional entropy. 

 

Figure 10.  Using conditional entropy for anomaly detection.  (Arackaparambil et 

al., 2010:7) 

 

     Leak Detection 

 Leak detection in a pipeline is a form of anomaly detection.  Information entropy 

was used by Zhang, Qin, Wang, and Liang for leak detection in a SCADA-run pipeline 

system.  A concept derived from information theory improved leak detection sensitivity 

and lowered false alarm rates.  (Zhang, Qin, Wang, & Liang, 2009:981)  The previous 

leak detection system was prone to false alarms during normal operations.  The authors 

used the information entropy algorithm (Zhang et al., 2009:985)  
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 (14)  

to combine the information from the pressure and flow rate, where    is pressure (P), and 

   is flow rate (F).  When the entropy exceeded a certain value, it triggered further 

analysis for leak detection.  The authors state the usefulness of applying information 

theory to leak detection: 

One key feature of the leak detection system is that it has learning capability.  In 

order to optimize the performance of the leak detection system, parameter tuning 

is carried out both during the design stage and after the initial installation.  On the 

basis of this information fusion system, [leaks] can be [detected] with low false 

alarm rate and high sensitivity.  (Zhang et al., 2009:985) 

 

Failures of Information Theory 

 Shannon wrote a short article titled The Bandwagon, where he warned others of 

the overuse of information theory.  He stated that information theory has “perhaps been 

ballooned to an importance beyond its actual accomplishments” and cautioned that it 

“will be all too easy for our somewhat artificial prosperity to collapse overnight when it 

is realized that the use of a few exciting words like information, entropy, redundancy, do 

not solve all our problems” (Shannon, 1956:3).  This is true for some attempted 

applications of information theory such as psychology. 

 R. Duncan Luce authored an article in the journal Review of General Psychology 

where he describes the “incompatibility between information theory and the 

psychological phenomena to which it has been applied” (Luce, 2003:183).  For a time 

following Shannon’s paper, psychologists attempted to apply information theory in their 

experiments with little success (Luce, 2003:184-185).  Luce states the biggest reason for 
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this incompatibility is the dependence on structure of signals in much of psychology.  In 

psychology, the response to stimuli has a dependence on “differences or ratios of 

intensity and frequency measures between pairs of stimuli” (Luce, 2003:185).  This is an 

example where information theory was used because of its popularity and not because it 

made sense as a technique.  However, there is evidence that information theory has been 

successfully applied to anomaly detection for SCADA systems. 

Attack Scenarios 

 The way an attacker implements the message changes can have an impact on if 

anomalies are caught by an operator or anomaly detection system.  Dorothy Denning 

described this type of attack in her paper on intrusion detection.  She stated that “it may 

be possible for a person to escape detection through gradual modifications of behavior or 

through subtle forms of intrusion that use low-level features of the target system” 

(Denning, 1987:232).  Similarly, in a paper about anomaly detection using conditional 

entropy, Arackaparambil et al. state that there is “the concern that an adversary could 

attempt to mask the effect of his attacks on variability by a mimicry attack disguising his 

traffic to mimic the distribution of normal traffic in the network, thus avoiding detection 

by an entropy monitoring sensor” (Arackaparambil et al., 2010:1).  SCADA system 

operators are susceptible to subtle attacks that are too slow to cause an alarm from an 

intrusion detection system and an operator may not detect the change over time.  These 

types of attacks are of particular interest to this research.  Chapters III and IV describe the 

specific attack scenarios used in this research. 



44 

Summary 

 All over the world, many critical infrastructures rely on SCADA systems.  Alarm 

monitoring is an important part of operating these systems and recent standardization of 

protocols and internet connections make operators susceptible to an attacker making 

changes to the system.  Though it has been 65 years since Claude Shannon introduced 

information-theoretic measures for use in telecommunications, the concepts he developed 

and the work of others in this area have been applied to many fields in science in 

technology.  This chapter reviewed some of the key concepts of information theory and 

its application to anomaly detection.  Chapter III describes the methodology for this 

research. 
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III.  Methodology 

Introduction 

The objective of this research is to evaluate the use of information theory in an 

anomaly detection model and the significance of different attack scenarios.  This research 

proposes to meet this goal by using the measure of entropy derived from information 

theory applications to anomaly detection (Lee & Xiang, 2001).  The desired outcome is 

an information entropy based model for detecting system problems and message 

manipulation attacks.  The model is used to analyze different attack scenarios using a full 

factorial experiment repeated for three different model settings.  The framework for the 

research is shown in Figure 11 and summarized in the following paragraphs.   

 

Figure 11.  Research framework. 

The methodology for this research begins with extracting data from messages 

collected from a Supervisory Control and Data Acquisition (SCADA) system; 

specifically, a system using the Modbus communication protocol.  The scope of this 

research includes message traffic data from slave devices to the SCADA master.  This 
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research concerns the messages that hold alarm information, particularly the status of 

coils and readings of registers.  These messages use the Modbus function codes of 1 and 

3, which correspond to Read Coil Status and Read Register, respectively (Clarke & 

Reynders, 2004:49).  Chapter II discusses the function codes in more detail.  These two 

message types provide the data needed for the SCADA master to determine if an alarm 

has occurred, such as a coil being off when it is supposed to be on or a register value 

outside of the preset threshold.  This methodology assumes that the user has collected the 

message traffic, imported the data into Microsoft Excel, and converted it to decimal 

format.   

Building the model using information theory requires a finite list of message types 

and frequencies of those messages.  Here, SCADA messages that consist of readings on a 

continuous scale are converted to messages that either trigger an alarm or do not trigger 

an alarm.  This provides a finite set of possible messages for use in calculating entropy.  

The conversion from a continuous scale to a finite scale has been used by others to 

facilitate calculating entropy.  For example, Schutzer calculated the entropy of the 

location of a ship by using the probability of a ship being located in a specific area on a 

grid map (Schutzer, 1982:17). 

To develop and explain the methodology, SCADA messages for a simple 10 

component system are simulated using a random number generator in Microsoft Excel.  

Microsoft Excel 2007 spreadsheets and Visual Basic 6.5 macros are used to format the 

message data.  This data is used to ensure the model works correctly and to develop the 

application of attack scenarios.  JMP 10.0.2 software is used to build the full factorial 

experiment and analyze the results. 
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Excel and Visual Basic are used to create the information theory based anomaly 

detection model.  This model calculates the information-theoretic measure of entropy 

over time using a sliding window.  Several attack scenarios are analyzed for their impact 

to the system, such as changing the alarm distribution of the SCADA system without 

triggering an anomaly from the model.  Chapter IV applies the model and analyzes attack 

scenarios using data from a water treatment plant. 

Data Format 

 This research begins with the assumption that the user has collected SCADA 

message traffic from their system and used their own software to format the messages 

into Excel.  It is also assumed that the user has knowledge of the Modbus Map, which 

identifies the message sending devices on the SCADA system and the operating 

thresholds.  The Modbus Map information is used to create a look up table to determine if 

a message results in an alarm.  (The water treatment plant data used in Chapter IV did not 

contain the component thresholds; instead they were constructed using known abnormal 

plant states, which is described that chapter.)  The data log is in hexadecimal format, 

which must be converted to decimal and binary (where applicable) before analysis can 

begin.  Figure 12 (Simply Modbus, 2013) is an example of a data log of Modbus traffic in 

hexadecimal format. 

 
 

Figure 12.  Example Modbus Data Log.  (Simply Modbus, 2013) 
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 A Google search with the terms “Modbus Excel” returns a multitude of different 

professional and shareware examples of formatting Modbus data in Excel.  An example 

from a water supply system is shown in Figure 13 (Weidling, 2000).  This research is 

based on the Modbus protocol, but other protocols also have the ability to export 

messages to a similar Excel format.  After the Modbus data is in a spreadsheet, the next 

step to formatting data can begin.  

 

Figure 13.  Example of SCADA data formatted in Excel.  (Weidling, 2000) 

 Once the message traffic is displayed in Excel, it is formatted for use with the 

information entropy measure.  The messages are formatted to show when the message 

was sent, the origin of the message, and the alarm state for that device.  It is also useful to 

create a column to label the polling cycle of the message.  Table 1 shows an example of 

the formatted messages using the data from Figure 13.  The current reading, which is a 

continuous value, is converted to a binary alarm state with 1 for alarm and 0 for no alarm.  

The alarm column compares the current reading to the set threshold values using a look 

up table for the origin of the message, shown in Table 2.  This format is suitable for 

calculating entropy. 

City of Arcata Water Supply System
Date and time of this sheet

1/23/98  16:47

RUGID SITE # SITE 3 SITE 4 SITE 6 SITE 6 SITE 6

TANK # at site TANK 1AB TANK 2 TANK 3 TANK 7 TANK 4

Present Level 28.8 27.8 27.8 11.0 24.2
High-High setpoint 31.5 31.0 30.0 18.5 30.5

Low-Low setpoint 23.0 21.0 22.0 5.0 17.0

High-High alarm OK OK OK OK OK

Low-Low alarm OK OK OK OK OK

Pump One-fail alarm OK OK OK OK

Pump Two-fail alarm OK OK OK OK

Power-fail alarm OK OK OK OK OK

Com-fail alarm OK OK OK OK OK

Lead Pump Mode AUTO AUTO AUTO AUTO

Lag Pump Mode AUTO AUTO AUTO AUTO

Site voltatge 13.2 13.9 13.2 13.2 14.6

Alarms, Levels and Alliance Flow Summary
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Table 1.  Formatted SCADA data. 

 

   

Table 2.  Threshold look up table. 

 

Simulated SCADA Message Traffic 

 To facilitate explanation of the methodology for this research and build a basic 

anomaly detection model, messages from a simple notional SCADA system are 

simulated.  A SCADA system with 10 slave devices sending messages to the master 

using a full cycle polling system is simulated using Excel.  The 10 devices are given 

identification numbers 1 through 10.  Each of these devices sends a message containing 

its current sensor reading to the master every cycle, which is once per hour.  This is 

equivalent to Modbus function code 3, reading the register.   

 Sensor readings were simulated using the Excel random number generator and the 

normal distribution to represent several notional SCADA components.  The normal 

distribution was used because some of the sensor components from the water treatment 

plant data, used in Chapter IV, have normally distributed continuous values.  Different 

means and standard deviations were used to represent several SCADA components 

Time Period Cycle# Slave ID Coil/Register Reading Alarm?

1/23/1998 16:47 1 SITE 3 TANK 1AB 28.8 0

1/23/1998 16:47 1 SITE 4 TANK 2 27.8 0

1/23/1998 16:47 1 SITE 6 TANK 3 27.8 0

1/23/1998 16:47 1 SITE 6 TANK 7 11 0

1/23/1998 16:47 1 SITE 6 TANK 4 24.2 0

Origin Low High

SITE 3 TANK 1AB 23 32

SITE 4 TANK 2 21 31

SITE 6 TANK 3 22 30

SITE 6 TANK 7 5 19

SITE 6 TANK 4 17 31

THRESHOLD LOOK UP TABLE
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(origins) that report continuous readings.  Here, the values are unitless, but could 

represent any continuous reading such as pressure or temperature.  The values are 

bounded at zero to prevent negative readings.  The threshold values were generated using 

a range of plus or minus one or two standard deviations from the mean, creating a small 

number of alarms for each component.  The choice for the threshold values are notional 

and used only for building a working model; it was desired to have alarms for some of 

the components to ensure the model was working correctly.  Table 3 shows the simulated 

message logs for the first two cycles, formatted for use in the anomaly detection model.  

Again, 1 signifies an alarm and 0 signifies no alarm.  Table 4 shows the look up table 

used to calculate the alarm column.   

Table 3.  Simulated SCADA data for creating the anomaly detection model. 

 

 

Time Period Cycle# Origin Reading Alarm?

9/1/2013 01:00:00 1 1 54.17 0

9/1/2013 01:00:00 1 2 53.35 0

9/1/2013 01:00:00 1 3 54.96 0

9/1/2013 01:00:00 1 4 85.26 0

9/1/2013 01:00:00 1 5 4.45 0

9/1/2013 01:00:00 1 6 87.71 0

9/1/2013 01:00:00 1 7 874.96 1

9/1/2013 01:00:00 1 8 53.71 0

9/1/2013 01:00:00 1 9 3.36 0

9/1/2013 01:00:00 1 10 47.91 0

9/1/2013 02:00:00 2 1 42.44 1

9/1/2013 02:00:00 2 2 51.71 0

9/1/2013 02:00:00 2 3 66.65 0

9/1/2013 02:00:00 2 4 86.20 0

9/1/2013 02:00:00 2 5 6.13 0

9/1/2013 02:00:00 2 6 105.21 0

9/1/2013 02:00:00 2 7 786.10 0

9/1/2013 02:00:00 2 8 57.57 0

9/1/2013 02:00:00 2 9 2.78 0

9/1/2013 02:00:00 2 10 48.29 0
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Table 4.  Look up table for alarm thresholds. 

 

Anomaly Detection Model 

 An anomaly detection model was built using the information entropy of SCADA 

system messages.  Entropy measures the uncertainty in knowing which messages will 

occur next.  Changes in entropy can be used to detect anomalies in communication, as 

discussed by Lee and Xiang (2001).  Similar to Winter, Lampesberger, Zeilinger, and 

Hermann (2011), this model uses entropy over time with a sliding window approach to 

measure the difference between the predicted entropy and observed entropy.  The entropy 

is predicted using a smoothing algorithm, discussed in the next section.  The difference 

(prediction error),   (Winter et al., 2011:198), between the observed value    and 

predicted value     is  

                      (15)  

The prediction error is the same as the absolute value of the residual.  If this difference is 

greater than a value set by the learning data, then an anomaly alarm is triggered.  The 

learning data is a user set number of initial messages to baseline the prediction error, 

which is used to set the anomaly flag value.  This data should be representative of normal 

Origin Low High

1 43.95 54.95

2 50.02 67.66

3 49.48 68.08

4 70.98 89.04

5 3.21 6.84

6 73.50 105.27

7 736.02 860.72

8 45.28 59.07

9 2.53 3.48

10 45.42 56.27

Threshold Look Up Value
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system operations and should not include any required warm-up period.  The following 

subsections describe the details of this model. 

     Entropy Time Series 

 The foundation of the anomaly detection model is calculating the system entropy 

over time.  Once the data is in the format of Table 3, an Excel spreadsheet is used to 

calculate the system entropy based on the frequency of alarms for each component, 

shown in Figure 14.  The user constructs the left side of the figure (shown in green); it 

shows all the possible message types of alarm or no alarm for each component.  The 

Counts column is a sum of all the messages from a particular component (Origin) with a 

specific alarm status (Alarm) that occur within a window of cycles (Start Cycle to Stop 

Cycle).  The empirical probability of a message type (Prob) is determined using the 

number of messages divided by the total number of messages.  The System Entropy value 

is the entropy of the system in that cycle window. 



53 

 

Figure 14.  Entropy calculations. 

 The information entropy of the system is calculated over a sliding window of 

time.  The entropy is calculated using the probabilities of each message type   and the 

number of components   within the window.  Each component has two message types 

(alarm or no alarm), therefore the total number of message types is   .  Here,         

  when     . (Shannon, 1948: 398).  The entropy is normalized by dividing by 

         to simplify interpretation (Winter et al., 2011:196): 

 
    

        
  
   

       
  (16)  

 As discussed in Chapter II, the sliding window approach involves calculating 

entropy over a period and then shifting the widow by one cycle and recalculating the 

entropy.  The widow also overlaps the previous window.  For example, a widow size of 

five cycles means that the entropy is calculated for messages starting in cycle one and 

System Entropy 0.858 Start Cycle 1

Stop Cycle 5

Messages 50

Origin Alarm Counts Prob Bits

1 0 2 0.040 4.644

2 0 4 0.080 3.644

3 0 5 0.100 3.322

4 0 5 0.100 3.322

5 0 5 0.100 3.322

6 0 4 0.080 3.644

7 0 4 0.080 3.644

8 0 5 0.100 3.322

9 0 5 0.100 3.322

10 0 4 0.080 3.644

1 1 3 0.060 4.059

2 1 1 0.020 5.644

3 1 0 0.000 0.000

4 1 0 0.000 0.000

5 1 0 0.000 0.000

6 1 1 0.020 5.644

7 1 1 0.020 5.644

8 1 0 0.000 0.000

9 1 0 0.000 0.000

10 1 1 0.020 5.644
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ending in cycle five.  The next entropy is calculated from cycle two through cycle six.  A 

Visual Basic macro is used to increment the start cycle and save the entropy for each 

window into a new spreadsheet.  The user can change the size of the window.   

     Smoothing Algorithms for Prediction 

 The model identifies an anomaly when the observed entropy differs from the 

predicted entropy by more than a set amount,  .  This research uses two different 

prediction algorithms:  moving average (MA) and single (a.k.a. simple) exponential 

smoothing (SES).  At time              the MA predicted value     (Krishnamurthy, 

Sen, Zhang, & Chen, 2003:237),  

 

      
    

 

 

   

                 (17)  

is the average of the last   observed values      The value of   determines how many of 

the previous observations are used to predict the next value.    is an integer that can 

range from one (where the prediction is equal to the last observed value) to one less than 

the number of entropy values calculated in the baseline.  The next section discusses how 

  is determined. 

 The SES algorithm, an exponentially weighted moving average (EWMA), was 

first developed by S. W. Roberts (Roberts, 1959) and modified by J. Stuart Hunter; 

Hunter’s variation of SES is 

 
     

                                             

                              
  (18)  

where     is the predicted value at time period  , for          ,    is defined as the 

observed value at time period  , and   is a smoothing parameter that “determines the 
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depth of memory of the EWMA” and ranges from zero to one (Hunter, 1986:206).  The 

first prediction is initialized using the first observed value.  (Hunter, 1986:206)  For the 

notation, Hunter used   as the smoothing parameter;   is used here to align with recent 

research using SES, such as Winter et al. (Winter, Lampesberger, Zeilinger, and 

Hermann, 2001:197). 

 The MA and SES algorithms do not account for seasonal or trend factors in the 

data (Winter et al., 2001:197).  The need for incorporating these factors into the 

prediction algorithm depends on the source of the data and the window size.  MA differs 

from SES by equally weighting a set number of previous observations into the next 

predicted outcome.  SES weights the previous observations an exponentially decreasing 

amount by the age of the observation. 

     Determining Model Parameters 

 Several model parameters must be set to perform anomaly detection:  window 

size, anomaly flag threshold, baseline size, and the smoothing parameters.  These 

parameters impact the sensitivity to detecting attacks and the number of false alarms 

reported.  The objective is to maximize the number of manipulations detected and 

minimize the false alarms. 

 The size of the sliding window is an important aspect of anomaly detection.  

Smaller window sizes are more sensitive to changes, but can cause more false positives; 

larger windows result in less false positives, but may miss more anomalies (Winter et al., 

2011:199).  This research investigated the impact of varying the window size on attack 

detection percentage and false positive percentage (also known as false positive rate).  

The user sets the sliding window size on the model interface. 
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 The anomaly flag threshold is set using the amount of difference,  , between the 

observed entropy and predicted entropy.  Winter et al. allowed the user to set this 

threshold (Winter et al., 2011:199).  In this model, the anomaly threshold is set 

automatically using the baseline data.  The threshold is assigned the maximum   value 

from the baseline.  The choice of this method is from assuming the baseline data is 

representative of normal operations with no attacks or system problems present.  This 

method causes the baseline data to have no anomaly flags.   

 The baseline size determines the number of cycles that make up normal 

operations.  The baseline data is important because it sets the threshold for anomaly flags 

in the detection model.  Since this research has a limited amount of data, the baseline is 

chosen to balance establishing a proper threshold and still have enough remaining 

message data to investigate different alarm scenarios.  Additionally, the baseline should 

be representative of normal operating conditions and contain no attacks or system 

problems.  The user can set the baseline size as an input to the model.  If the data has a 

start up period that is different from normal operations then the baseline should begin 

after the start up period is over.  The simulated data used in this chapter and the data used 

in Chapter IV do not have a start up period; therefore, the baseline begins with the first 

cycle. 

 The smoothing parameters for MA and SES forecasting algorithms are assigned 

by choosing the value for   and  , respectively, that minimizes the square root of the 

Mean Squared Forecast Error (MSFE).  The MSFE, 
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 (19)  

is the average of the squared residuals, which also equals the average of the prediction 

errors (Gelper, Fried, & Croux, 2010:7).  This method selects smoothing parameters that 

minimize the amount of error in the predictions overall.  It also equally weights the 

residuals and is sensitive to outliers.  This could be an issue if “One very large forecast 

error causes an explosion of the MSFE, which typically leads to smoothing parameters 

being biased towards zero” (Gelper et al., 2010:7).  The user can optimize the smoothing 

parameters for the model by selecting a button on the model interface that runs a Visual 

Basic macro.  The macro runs the solver analysis tool to minimize MSFE by changing the 

smoothing parameter.  The default Excel solver settings were used, which applies the 

Generalized Reduced Gradient Algorithm.  The results of the solver can be checked by 

plotting the MSFE against the possible values for each smoothing parameter.  The 

following are the three constraints for the moving average constant,  :  it must be an 

integer, it must be greater than 0, and it is limited to 10% of the number of baseline 

cycles.  The third constraint is in place so that the MSFE is not biased to a small value in 

the event that the errors are small for the last few baseline cycles.  The constraints for   

are that it must be between zero and one.  In the event that   and   both equal one, the 

prediction algorithms become the same and the predicted value is equal to the last 

observed value.   
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Anomaly Detection 

 The model flags a cycle for containing an anomaly when the observed entropy 

differs from the forecasted entropy by an amount greater than the anomaly flag threshold.  

The anomaly flag points to the cycle recently added to the sliding window.  The flagged 

anomaly could mean an attack has occurred during that cycle, a problem with the system, 

or by normal system fluctuations that caused a false positive.  A potential issue with this 

definition is that attack manipulations may not immediately trigger an anomaly from the 

model, but they could impact the entropy at a later point and set off an anomaly flag.  

This possible lag between the attack and the anomaly flag may cause the operator to 

search for attacks in the wrong cycle; this is an area for future research.  As discussed, for 

this research, the anomaly flag threshold is set using the baseline messages.  The baseline 

is also used to optimize the smoothing parameters.  The same smoothing parameters are 

used for forecasting the entropy values of the data under analysis.   

Figure 15 shows an example of an anomaly flag generated when the difference in 

forecast value and observed value is greater than the threshold (shown here as 

Threshold).  The anomaly occurred when the sliding window started at cycle 15.  With a 

window size of two cycles, this means that cycle 16 may have a system problem or 

attack.  The model points to cycle 16, shown in the Flagged Cycle column in the figure, 

because it was the newest cycle added to the sliding window and the data in that cycle 

caused an entropy change larger than the threshold.  This example shows that both the 

MA and SES algorithms flagged the anomaly. 
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Figure 15.  Anomaly detection output and example of an anomaly flag. 

 The anomaly detection model classifies each cycle into one of four categories:  

true positive, false positive, false negative, and true negative.  An attack or problem is 

considered detected, and falls into the true positive (TP) category, if an anomaly flag 

points to a cycle containing an attack manipulation or problem.  The model crosschecks 

the flagged cycles against the known problems and applied attacks.  An anomaly is 

considered a false positive (FP) if there are no attack manipulations or known problems 

occurring during that cycle.  If the model does not flag a known attack or problem, then it 

is considered a missed anomaly, also known as a false negative (FN).  The last category, 

true negative (TN), occurs when a cycle that does not contain an attack or known 

problem is not flagged for an anomaly.  The next sections discuss attack analysis in more 

detail.   

Attack Scenario Experiment 

 The second objective of this research is to analyze the types of attack scenarios 

detected by the model and their impact on false positives.  Here the term attack is a 

scenario of alarm manipulations.  Alarm manipulations include adding or removing alarm 

messages from components.  An experiment was designed using a full factorial 

combination of certain attack scenario possibilities.  The experiment was repeated using 

Window Size: 2

Baseline Max Baseline Max

0.004 0.004

System Entropy Over Time

Start Entropy MA SES MA Diff SES Diff Flagged Cycle

13 0.840 #N/A #N/A

14 0.840 0.840 0.840 0.000 0.000

15 0.861 0.840 0.840 0.021 Anomaly 0.021 Anomaly 16

16 0.861 0.861 0.857 0.000 0.004

Anomaly? Anomaly?

Moving Average Simple Expon. Smooth
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two different sliding window sizes for the anomaly detection model.  The response 

variables are the true positive percentage (TP%) and the false positive percentage (FP%) 

for the two forecasting algorithms.  TP% is also known as sensitivity or the true positive 

rate; FP% is also known as the false positive rate (Linda, Vollmer, and Manic, 

2009:1832).  The goal is to maximize the TP% and minimize the FP%.  The next section 

provides the details on the experimental analysis.  This analysis provides insight into the 

impact of different attack scenarios and changing the sliding window size.  

 Attacks are added to the model and the entropy over time is calculated using the 

same calculations described previously.  An attack matrix, shown in Figure 16, creates 

manipulations of the SCADA alarms.  The dark shaded region on cycles 1-12 shows the 

baseline data.  The baseline data does not contain manipulations.  Alarms are added or 

removed by entering a 1 in the corresponding cycle and origin (component) of the attack 

matrix, as shown in the figure.  The alarm column shown in Table 3 changes based on the 

attack matrix.  If the original data did not have an alarm for a cycle and origin, then a 

lookup function uses the Added Alarms attack matrix (left side of figure) to determine if a 

manipulation has occurred and if an alarm is added.  If the original data did have an 

alarm, then the lookup function uses the Removed Alarms attack matrix (right side of 

figure) to determine if the alarm has been removed.  Once the attack scenario is applied 

to the attack matrices, the user runs a macro to calculate the entropy over time with the 

manipulated alarm messages.  The output for anomaly detection is shown in Figure 15.  
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Figure 16.  Attack matrices used for alarm manipulation. 

     The response variables are the true positive percentage (TP%) and false positive 

percentage (FP%) for each forecasting algorithm, which are derived from the confusion 

matrix shown in Figure 17 and the following equations (Linda, Vollmer, and Manic, 

2009:1832):   
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The TP% is the number of detected cycle attacks and known cycle problems (true 

positives) divided by the total number of cycle attacks and known problems (true 

positives and false negatives).  In other words, the TP% is the percent of attacks/problems 

detected out of the total number of attacks/problems.  The FP% is the number of false 

positives out of the number of normal states; it is the number of anomalies reported that 

do not correspond to any manipulations or known problems (false positives) divided by 

the number of cycles that do not contain problems or attacks.  The response variables are 

computed on a separate spreadsheet titled Summary.  The Summary sheet lists all the 

attack manipulations from the attack matrices and the anomalies reported by each 

forecasting method.  This sheet also displays the confusion matrix.  

 
 

Figure 17.  Confusion matrix. 

 

 The experimental design is composed of five attack scenario factors and one 

factor concerning the model.  Five factors have two levels and one factor has three levels.  

Table 5 shows the factors, the type of data (ordinal or categorical), and description of the 

levels.  The Number of Cycles (NC) is the number of cycles that have alarms added or 

removed in an attack; its levels include a low and high number of cycles with 

manipulations.  The Number of Targets (NT) factor is the number of components 

attacked; its levels are low and high number of components.  The Attack Spacing (AS) is 

the number of cycles between the groups of manipulations, with levels of low and high 

number of cycles.  The Attack Distribution (AD) includes grouping the manipulations 

"Attack/Problem" "No Attack/Problem"

Attack/Problem True Positive (TP) False Negative (FN)

No Attack/Problem False Positive (FP) True Negative (TN)

Predicted
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together, distributing them over a period of time, or increasing them from a small number 

to a larger number over time.  Increasing manipulations may have the impact of changing 

the entropy over time in small increments, therefore going undetected.  The Attack Type 

(AT) has two different levels:  adding alarms and removing alarms.  The last factor 

changes the detection model and is not part of the attack scenario.  The Window Size 

(WS) has the levels of small and large sliding window size.   

Table 5.  Experiment factors and levels. 

 

 This methodology uses a full factorial design with five replicates.  A full factorial 

design includes all possible combinations of each factor at all levels in every 

experimental run; this design is considered “most efficient” for analyzing the effects of 

several factors (Montgomery, 2011:183).  Replicates are used to “obtain an estimate of 

the experimental error” and increase the possibility of getting statistical significance of 

small differences (Montgomery, 2011:12).  Each replicate has                

samples.  Replicates are generated by increasing the cycle where the attack manipulations 

begin.  The original data does not change for each experimental run, but the distribution 

of alarms varies from cycle to cycle.  The attack start cycle is increased the same way 

when the experiment is repeated for different window sizes.  The possible number of 

replicates depends on the amount of data available, the window size, and the amount the 

Factor Type

Number of Cycles (NC) Ordinal Low High

Number of Targets (NT) Ordinal Low High

Attack Spacing (AS) Ordinal Low High

Attack Distribution (AD) Categorical Grouped Distributed Increasing

Attack Type (AT) Categorical Add Remove

Window Size (WS) Ordinal Small Large

Levels
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attack start cycle is increased for each replicate.  Eventually, shifting the attack start cycle 

will not allow the full attack to be applied to the remaining data.  The model does not 

randomize the samples since the original data is the same for each trial.  

Experiment Analysis 

 The results are analyzed using an analysis of variance (ANOVA) and the Kruskal-

Wallis (K-W) test, when needed, with JMP software.  The first test is conducted to 

determine if there is a relation between the response variables and the design factors; also 

known as the treatments (Kutner, Nachtsheim, and Neter, 2004:226).  This test uses the 

means model:  

                                     (21)  

where     is observation j of factor level i (for n observations and a different factor 

levels),    is the mean of level i, and     is the random error component (Montgomery, 

2011:69). 

 ANOVA is used to test the hypothesis that the mean response for each level of a 

factor (treatment) are equal (Montgomery, 2011:74): 

                

                                     
(22)  

The alternative is that at least one mean response is different.  The test statistic,   ,  
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(23)  

is the mean of the sum of the squared values for each treatment (            ) divided by 

the mean of the sum of squares for the error (       ) (Montgomery, 2011:74).  Here, 

there are a different treatments, N total observations, ni observations for treatment i,     is 

the total of all observations, and     is the total for treatment i.  The test statistic “is 

distributed as F with     and     degrees of freedom” (Montgomery, 2011:74).   

The main effects and interaction of factors are considered statistically significant if the p-

value from the F statistic is less than an alpha of 0.05.  The p-value is found with JMP 

software. 

 In addition to the p-value from the F statistic, the percent contribution to the total 

sums of squares is computed for each factor and full factorial interaction.  “The 

percentage contribution is often a rough but effective guide to the relative importance of 

each model term” (Montgomery, 2011:246).  It is the sum of squares for a factor divided 

by the total sum of squares. 

 There are assumptions necessary to use the ANOVA that need to be checked.  

First, in order to avoid false positive results using ANOVA, the residuals should be 

normally distributed.  “In general, moderate departures from normality are of little 
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concern in the fixed effects analysis of variance [and it]…is robust to the normality 

assumption” (Montgomery).  This research will use a normal quantile plot of the 

residuals to assess the normality assumption.   

 Another assumption is that the data is independent and does not contain any 

significant outliers (Montgomery, 2011:82).  The samples are collected independently as 

described earlier in this chapter when the replicates were defined.  This research assumes 

that there are no outliers in the data used in Chapter IV.  Large residuals are assumed to 

be legitimate values caused by the variation in the SCADA data.   

 The final assumption used in this research is that the replicates have constant 

variance.  This is assessed by plotting the residuals against the predicted value.  This plot 

should show no structure.  The residuals should not reveal any pattern and should have a 

constant variance. 

 If the residuals do not appear normally distributed, the K-W test will be used to 

confirm the ANOVA results.  This is a non-parametric ranks test which Douglas 

Montgomery states can be used in the event of nonnormality: 

When we are concerned about the normality assumption or the effect of outliers 

or "wild" values, we recommend that the usual analysis of variance be performed 

on both the original data and the ranks. When both procedures give similar 

results, the analysis of variance assumptions are probably satisfied reasonably 

well, and the standard analysis is satisfactory.  When the two procedures differ, 

the rank transformation should be preferred because it is less likely to be distorted 

by nonnormality and unusual observations.  (Montgomery, 2011:130) 

 

 The K-W test begins by rank-ordering the results for each treatment; ties are 

given the average value of the ranks of the ties group.  This test “is used to test the null 

hypothesis that the a treatments are identical against the alternative hypothesis that some 
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of the treatments generate observations that are larger than the others” (Montgomery, 

2011:128).  The hypothesis shown mathematically is 

 

 
    

  

  
 

  

  
   

  

  
 

    
  

  
 

  

  
                             

(24)  

The K-W test statistic is  
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(26)  

where    is the “sum of the ranks of the ith treatment…   is the number of observations 

of the ith treatment, N is the total number of observations”, and    is the variance 

(Montgomery, 2011:129).  For large value of   , H is approximately distributed as a chi 

squared with     degrees of freedom.  The null hypothesis is rejected if 

         
  (27)  

When the null hypothesis is rejected, it means that there is enough evidence to conclude 

that at least one of the attack factors or interactions had a significant impact on the 

detection rate.  JMP software is used to compute the p-value for the test statistic.  

(Montgomery, 2011:129) 
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Summary 

 This chapter explained the methodology for the anomaly detection model and the 

experiment for analyzing the attack scenarios.  The model was developed using a notional 

SCADA system and applying information entropy and a prediction algorithm.  Chapter 

IV applies the anomaly detection model to a publicly available dataset of water treatment 

plant SCADA messages.  This dataset is used to evaluate the model and analyze the 

significance of different attack scenarios applied to the dataset. 
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IV.  Analysis and Results 

Introduction 

 This research applies the information entropy anomaly detection model and attack 

scenarios to data from a water treatment plant monitoring system.  A 2007 report to 

Congress from the US Government Accountability Office (GAO) identified water 

treatment as a critical infrastructure and its security as a national priority.  “Critical 

infrastructures are physical or virtual systems and assets so vital to the nation that their 

incapacitation or destruction would have a debilitating impact on national and economic 

security, public health, and safety” (GAO, 2007:3).  GAO described the vulnerability and 

threats to the Supervisory Control and Data Acquisition (SCADA) system: 

Critical infrastructure control systems face increasing risks due to cyber threats, 

system vulnerabilities, and the serious potential impact of attacks as demonstrated 

by reported incidents.  Threats can be intentional or unintentional, targeted or 

nontargeted, and can come from a variety of sources including foreign 

governments, criminal groups, and disgruntled organization insiders.  Control 

systems are more vulnerable to cyber attacks than in the past for several reasons, 

including their increased connectivity to other systems and the Internet.  (GAO, 

2007:2) 

 

 The GAO report discussed several examples of attacks on water treatment 

systems.  In 2000, a disgruntled applicant for a government job in Australia reportedly 

“[broke] into the controls of a sewage treatment system…altered data for…pumping 

stations and caused malfunctions in their operations, ultimately releasing about 264,000 

gallons of raw sewage into nearby rivers and parks” (GAO, 2007:15).  Another example 

was in 2006 in Harrisburg, Pennsylvania when “a foreign hacker penetrated security at a 

water filtering plant…[and] planted malicious software that was capable of affecting the 

plant’s water treatment operations” (GAO, 2007:16-17). 
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 The scenario for this chapter is the analysis of defending a water treatment plan 

from an attacker.  Here, the water treatment plant is employing the entropy based 

anomaly detection model defined in Chapter III to detect problems with the system and 

identify alarm manipulation attacks.  The objectives of this chapter are to evaluate the use 

of the detection model on this water treatment system and identify the impact of different 

attack scenarios on detection rate and false positive percentage.  Analysis of variance 

(ANOVA) is used to evaluate the factors specific to the model and the attack scenario 

factors.  This process is repeated on a modified dataset that contains no abnormal cycles 

with the exception that only added attacks are considered in the analysis of the modified 

dataset.  Appendix A contains step-by-step instructions for running the model in Excel.   

Data 

 Complete message traffic data and system information from a SCADA system 

were not available for this research.  System owners may be reluctant to provide this 

information due to the risk of exposing critical vulnerabilities and affecting their system 

(Chunlei, Lan, & Yiqi, 2010:342).  As an alternative, this research uses a publicly 

available database comprised of daily sensor readings and classification of plant state at a 

wastewater treatment plant to meet the objectives of evaluating the anomaly detection 

model using different attack scenarios.   

 The database used in this project is from the UCI Machine Learning Repository 

(Bache & Lichman, 2013).  The data has 527 days of readings (the samples) from 38 

sensors (the system components) covering a period between January 1990 and October 

1991, though the database does not cover every day.  The original source is the 
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Autonomous University of Barcelona, Spain, June 1993.  Refer to Appendix B for a 

thorough description of this database, including descriptions of the sensors and plant 

states.   

 The database had many missing sensor values, which were addressed before 

beginning analysis.  The sensor data was missing 591 values, consisting of about 3% of 

the total data.  Some sensor readings were missing over 10% of their values and some of 

the samples were missing more than one sensor reading.  The last observation carried 

forward method of imputation was used because of the source of the data (Young, 

Weckman, & Holland, 2010:19).  Some data acquisition systems respond to missing 

values by using the “last reported parameter value” (Bentley Systems Inc, 2004:10).         

The dataset did not contain information on the alarm thresholds for each sensor.  

Normally, a SCADA operator would know the alarm threshold settings for each 

component and be able to adjust those settings (Shaw, 2006:158-159).  In order to use the 

dataset in this research, alarm thresholds for each component (sensor) needed to be 

derived.  This was done using the anomaly detection model as described in the next 

section. 

Setting Model Parameters 

 Several model parameters were set before the analysis could begin.  The alarm 

threshold values, baseline cycles, smoothing constants, anomaly threshold, and sliding 

window size all needed to be determined.  

Since the dataset contained information about the plant state for each day, the 

days with abnormal plant states were used to set the alarm threshold.  It was assumed that 
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any reading greater than a certain number of standard deviations from the mean was 

outside of normal operating thresholds and therefore triggered an alarm.  The standard 

deviation was chosen because many of the distributions fit the normal distribution using 

the Kolmorgov-Smirnov test with an alpha equal to 0.01 significance, and all of the 

distributions were mound shaped except for 14 sensors that were bounded on one side.   

For the 14 components that were bounded, alarms only occurred for values below/above 

the set number of standard deviations from the mean, depending on which side the data 

was bounded.  Thresholds between three and six standard deviations were evaluated. 

 The procedure for setting the component thresholds began with identifying the 

number of cycles for the baseline.  The first abnormal state of the water treatment plant 

occurred at cycle 60; therefore the first 45 cycles were used for the baseline.  45 cycles 

were used to allow for a buffer of normal cycles to occur in the data under analysis before 

the first abnormal state occurred.  The next step in setting the component thresholds is to 

calculate the true positive percentage (TP%) and false positive percentage (FP%) for 

different sizes of the sliding window.  For reference, the confusion matrix and 

calculations for TP% and FP% are shown in Figure 18 and equation (28), respectively 

(Linda, Vollmer, and Manic, 2009:1832).   

 
 

Figure 18.  Confusion matrix. 
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(28)  

 This is repeated for alarm threshold values of three, four, five, and six standard 

deviations from the mean.  

 The next step in setting the component thresholds is determining the smoothing 

parameters used in the model.  This entails calculating the entropy over time of the 

baseline cycles using different sliding window settings.  The model interface provides the 

user the option to optimize the smoothing constants using a macro that runs the Excel 

solver tool, described in Chapter III.  Here, every window size and standard deviation 

setting evaluated resulted in a moving average interval and simple exponential smoothing 

(SES) constant alpha equal to 1.0.  When the smoothing constants are both equal to 1.0, 

the forecasting algorithms both predict using only the last observed entropy; this is the 

setting used for the factorial experiment.  An additional smoothing constant setting of 

alpha equal 0.8 is used in setting up the model to compare the performance.     

The next step is performed to determine the standard deviation values for the data 

and the window sizes to be used in the factorial experiment.  To do this, the TP% and 

FP% were calculated for window sizes between two and 15 and for standard deviation 

values between three and six.  This step was repeated for alpha values of 1.0 and 0.8 and 

using two ways to calculate the prediction error:  absolute value of observed minus 

predicted and only the positive values of observed minus predicted.  The goal was to 

achieve a 100% detection (TP%) of the abnormal cycles at the lowest FP%.  This was 

chosen because most SCADA operators prioritize detecting 100% of system problems 
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and accept a trade-off of more false alarms, though this depends on the criticality of the 

system and the cost of responding to false alarms (Gerard, 2005:3).  A water treatment 

plant is considered a critical resource that undetected problems could cause severe 

consequences (GAO, 2007:3).   

The results of this evaluation are shown in Table 6.  The anomaly detection model 

was able to detect 100% of the system problems.  All combinations that achieved a 100% 

TP% are highlighted in green.  Of those, the settings achieving the lowest FP% are 

highlighted in orange.  The results showed that an alarm standard deviation (StDev) 

setting of five, a window size (WS) of 11, an alpha of 1.0, and using only positive values 

of prediction errors (Max Diff Only) resulted in the lowest FP% for the combinations that 

achieved a 100% TP%.  Here, the model was optimized with this data using the 

maximum difference setting.  Using this setting, only increases in entropy will be 

detected.  Since it is likely that the baseline of the system will contain relatively few 

alarms sent to the operator, only attacks that add alarm messages and increase the overall 

entropy will be detected.  Removing alarms will not be detected because they would 

cause the entropy to decrease.  Further testing is necessary to determine if this result can 

be generalized to other systems.  Additionally, future research should evaluate using the 

absolute value of the prediction error to determine if removing alarm attacks can be 

detected.   
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Table 6.  TP% and FP% for different model parameters. 

 

WS StDev TP% FP% TP% FP% TP% FP% TP% FP%
2 3 0.00% 0.23% 0.00% 0.00% 0.00% 0.47% 0.00% 0.00%
3 3 0.00% 0.23% 0.00% 0.00% 0.00% 0.47% 0.00% 0.00%
4 3 0.00% 0.23% 0.00% 0.00% 0.00% 0.47% 0.00% 0.00%
5 3 0.00% 0.23% 0.00% 0.00% 0.00% 0.94% 0.00% 0.00%
6 3 0.00% 0.23% 7.14% 0.23% 0.00% 0.94% 14.29% 0.00%
7 3 0.00% 0.23% 0.00% 0.00% 0.00% 0.70% 0.00% 0.00%
8 3 0.00% 0.23% 0.00% 0.00% 0.00% 0.70% 0.00% 0.00%
9 3 0.00% 0.23% 0.00% 0.00% 0.00% 0.70% 0.00% 0.00%

10 3 0.00% 0.23% 0.00% 0.00% 0.00% 0.94% 0.00% 0.00%
11 3 0.00% 0.23% 0.00% 0.00% 0.00% 0.94% 0.00% 0.00%
12 3 0.00% 0.23% 0.00% 0.00% 0.00% 0.70% 0.00% 0.00%
13 3 0.00% 0.23% 7.14% 0.00% 14.29% 0.70% 21.43% 0.00%
14 3 14.29% 1.17% 14.29% 0.00% 21.43% 2.34% 21.43% 0.00%
15 3 0.00% 0.23% 0.00% 0.00% 7.69% 0.93% 7.69% 0.00%
2 4 64.29% 4.22% 50.00% 1.41% 71.43% 5.39% 57.14% 1.64%
3 4 57.14% 5.62% 50.00% 2.58% 57.14% 6.09% 50.00% 2.11%
4 4 42.86% 5.85% 42.86% 2.58% 50.00% 6.56% 50.00% 2.81%
5 4 42.86% 6.32% 42.86% 2.11% 57.14% 7.49% 57.14% 2.34%
6 4 64.29% 6.56% 64.29% 2.58% 71.43% 7.26% 71.43% 2.58%
7 4 57.14% 4.92% 57.14% 1.64% 64.29% 6.09% 64.29% 1.87%
8 4 50.00% 5.62% 50.00% 2.11% 64.29% 7.03% 64.29% 2.58%
9 4 57.14% 6.09% 57.14% 2.11% 64.29% 7.26% 64.29% 2.58%

10 4 64.29% 5.85% 64.29% 2.11% 57.14% 6.79% 57.14% 2.11%
11 4 57.14% 5.39% 57.14% 1.87% 57.14% 6.56% 57.14% 2.58%
12 4 64.29% 5.62% 64.29% 1.87% 71.43% 7.49% 78.57% 2.81%
13 4 57.14% 5.15% 57.14% 1.41% 71.43% 7.03% 85.71% 3.75%
14 4 57.14% 9.84% 57.14% 3.98% 78.57% 11.94% 78.57% 4.68%
15 4 50.00% 5.15% 50.00% 1.41% 50.00% 6.32% 50.00% 1.64%
2 5 71.43% 6.32% 57.14% 2.34% 64.29% 10.77% 50.00% 3.51%
3 5 57.14% 9.37% 50.00% 3.98% 71.43% 11.71% 64.29% 4.45%
4 5 71.43% 7.73% 71.43% 3.04% 71.43% 13.35% 71.43% 5.15%
5 5 78.57% 8.90% 78.57% 2.81% 78.57% 12.88% 78.57% 4.68%
6 5 78.57% 7.03% 78.57% 1.87% 92.86% 11.48% 92.86% 4.22%
7 5 78.57% 6.79% 78.57% 1.64% 92.86% 11.01% 92.86% 3.75%
8 5 78.57% 7.96% 78.57% 2.11% 92.86% 13.58% 92.86% 4.68%
9 5 85.71% 8.20% 85.71% 2.81% 92.86% 13.11% 92.86% 4.92%

10 5 92.86% 7.03% 92.86% 2.11% 92.86% 12.41% 92.86% 4.45%
11 5 100.00% 10.54% 100.00% 3.51% 100.00% 13.11% 100.00% 4.45%
12 5 92.86% 7.03% 92.86% 1.41% 100.00% 13.11% 100.00% 5.39%
13 5 92.86% 8.20% 92.86% 2.58% 92.86% 13.11% 92.86% 5.62%
14 5 100.00% 8.20% 100.00% 10.30% 92.86% 10.77% 100.00% 11.71%
15 5 85.71% 7.26% 85.71% 2.58% 85.71% 11.01% 85.71% 3.04%
2 6 92.86% 12.88% 78.57% 5.62% 85.71% 17.80% 71.43% 7.26%
3 6 85.71% 12.65% 64.29% 5.39% 92.86% 16.63% 78.57% 6.56%
4 6 85.71% 11.48% 78.57% 4.22% 78.57% 18.74% 78.57% 7.03%
5 6 85.71% 14.75% 85.71% 6.09% 92.86% 19.20% 92.86% 7.03%
6 6 78.57% 13.35% 78.57% 5.62% 92.86% 18.97% 92.86% 7.03%
7 6 92.86% 12.41% 92.86% 4.68% 100.00% 17.80% 100.00% 6.09%
8 6 85.71% 15.22% 85.71% 6.56% 92.86% 19.91% 92.86% 7.73%
9 6 92.86% 14.99% 92.86% 5.62% 100.00% 20.37% 100.00% 7.96%

10 6 92.86% 17.56% 92.86% 6.79% 92.86% 19.67% 92.86% 7.03%
11 6 100.00% 18.03% 100.00% 6.79% 100.00% 18.97% 100.00% 7.03%
12 6 100.00% 14.05% 100.00% 5.62% 100.00% 18.74% 100.00% 7.03%
13 6 100.00% 17.56% 100.00% 6.79% 100.00% 19.91% 100.00% 8.20%
14 6 100.00% 16.63% 100.00% 6.56% 100.00% 20.14% 100.00% 7.96%
15 6 85.71% 13.82% 85.71% 5.85% 85.71% 17.80% 85.71% 6.79%

Alpha = 1

Max Diff Only

Alpha = 1

Abs Value of  Diff

Alpha = 0.8

Max Diff Only

Alpha = 0.8

Abs Value of  Diff
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The results of the TP% and FP% using the maximum prediction difference 

method for all standard deviations tested are shown in Figure 19.  The arrows in the 

figure point to the two sliding window sizes used during the factorial experiment.  The 

window size of 11 and standard deviation of five (green line in the graph) had the lowest 

FP% of all the settings achieving 100% TP%.  A window size of four was chosen to 

compare the impact of the attack scenarios on TP% and FP% for a smaller window size.  

Now that the data and model parameters are set, analysis of the data can begin. 

 
 

Figure 19.  Graph used for setting model parameters. 

 

Model Evaluation 

 The first objective of the analysis is to evaluate the use of the entropy based 

anomaly detection model with realistic SCADA data from a water treatment plant.  This 

objective answers the question:  Can the model successfully detect system problems 
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when no attacks are present?  The previous section showed the success of the model in 

detecting system problems when it was used to set the component alarm thresholds.  This 

process revealed that 100% of the 14 abnormal cycles were detected when fewer alarms 

were present.  In fact, there were several different parameter settings that resulted in 

100% TP%, as shown in Table 6.   

 The model performed better when there were less alarms present in the data.  The 

water treatment data has 326 alarms present at five standard deviations from the mean.  

Fewer alarms means that the data has less variation in entropy values and results in a 

lower anomaly flag threshold.  Figure 20 shows a plot of the prediction error against 

cycle when fewer alarms are present.  The first 45 cycles are the baseline used to set the 

anomaly threshold, shown with an arrow and text in the figure.  The red squares represent 

the abnormal states and are located at the anomaly threshold value.  As shown in the 

graph, prediction errors greater than the threshold occur for each abnormal state.  These 

settings resulted in 100% TP% and 3.40% FP%.  

 The model performed poorer when there were more alarms present in the data.  

There are 1508 alarms in the data at three standard deviations from the mean; nearly five 

times as many than the five standard deviation setting.  The prediction error has more 

variation with more alarms.  Figure 21 shows the plot of prediction error against cycle 

when there are more alarms.  Here, the first 45 cycles, that are the baseline, contain 

prediction errors greater than the rest of the data; therefore, the anomaly threshold is too 

large and the model is not sensitive to the abnormal cycles.  The result of these settings 

are a zero TP% and a zero FP%.  This result may be specific to this dataset; it is possible 
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that the baseline data for this dataset happens to have more variance at a lower alarm 

threshold than the cycles under evaluation. 

 

Figure 20.  Prediction error against cycle for data with fewer alarms. 

 

 

Figure 21.  Prediction error against cycle for data with more alarms. 
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 These results may indicate that an entropy based anomaly detection model 

performs better on a more stable system when fewer alarms are present.  After adjusting 

the model settings, the model was able to detect 100% of the known system problems 

when no attacks were present.  These settings are representative of what a system owner 

would likely use to detect problems.  This research also reveals that the performance of 

the model is sensitive to the alarm thresholds.  Noisier systems produce higher anomaly 

thresholds and the system problems do not stand out from the noise.  The next section 

evaluates the ability of the model to detect attacks. 

Factorial Experiment 

  The second objective of the analysis is to determine which attack scenario factors 

and model parameters have a significant impact on TP% and FP%.  This research uses a 

full factorial experiment to evaluate the factors using the optimal window size of 11 

cycles.  The experiment is repeated for the smaller window size of four cycles and the 

results are compared.  The performance of the model is evaluated using an alpha of 1.0, 

which is equivalent to using the last observed value as the prediction.  The experiment 

was first run on the original water treatment data with known abnormal states.  Next, the 

experiment was run on a modified dataset that has the abnormal states removed; this 

allows a direct evaluation of the impact of the attack scenario factors.  The experiment is 

a full factorial design with five replicates.  Table 7 shows the values used for each factor 

level.  Details on the design and a description of each level are in Chapter III.  Each 

replicate generates 96 samples.  The response variables are the TP% and FP%.    
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Table 7.  Values for the continuous factor levels. 

 

 The analysis process has three phases.  Each phase performs ANOVA and the 

Kruskal-Wallis (K-W) test (when nonnormality is a concern) using JMP software.  

ANOVA was used to test if the main effects and/or interactions of the factor levels are 

significant.  ANOVA was also used in some cases to test which factor resulted in better 

performance of TP% and FP%.  As described in Chapter III, the null hypothesis is that 

their effects are not significant.  This research used an alpha of 0.05, therefore a p-value 

from the ANOVA table that is less than 0.05 will resulted in rejection of the null 

hypothesis and conclusion that the treatment means were different.  The analysis began 

by evaluating the effects of all factors and full factorial interactions.  Second, the window 

size model parameter was evaluated.  Third, the attack types were evaluated at each of 

the model factor levels.  This process is then repeated using a modified dataset that 

contains no abnormal cycles and only uses the attack type of adding alarms.  Using the 

modified dataset, the remaining attack scenario factors were evaluated.   

     All Factors 

 First, ANOVA was used to evaluate all the factors and possible interactions.  

Using JMP, there were five treatments with significant effects for the TP% response.  

There was one treatment with a significant effect for the FP% response.  Table 8 (left 

side) shows the treatments for the TP% response and their corresponding percent 

Factor Type

Number of Cycles (NC) Ordinal 1 6

Number of Targets (NT) Ordinal 1 5

Attack Spacing (AS) Ordinal 1 5

Attack Distribution (AD) Categorical Grouped Distributed Increasing

Attack Type (AT) Categorical Add Remove

Window Size (WS) Ordinal 4 11

Levels
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contribution to the total sum of squares.  Table 8 (right side) shows all the significant 

treatments for FP%.  The window size (WS) and number of cycles attacked (NC) had the 

highest percent contribution for the TP%.  For the FP%, window size was the only 

significant factor and had about a 96% percent contribution.  This means that the 

performance of the model is sensitive to the window size parameter.  The residuals for 

both responses appeared approximately normally distributed using a normal quantile plot.  

The residuals plotted against the predicted value did not show any issues with variance.  

The next section analyzes window size alone for its impact on TP% and FP%. 

Table 8.  TP% and FP% top significant factors, full model. 

 

     Window Size 

 The factorial experiment included a factor that only concerned a parameter of the 

anomaly detection model:  window size.  Earlier in this chapter, when the SCADA alarm 

thresholds were set, it appeared that window size had a large effect on the TP% and FP%.  

The last section concluded that window size (WS) was the most significant factor on 

TP% and FP%.  Here, an ANOVA was used to statistically evaluate the effect of window 

size and quantify its impact.   

 First, the effects of window size on TP% were analyzed.  A graph of TP% for 

each window size (WS) is shown in Figure 22.  The green diamonds on the graph 

represent the 95% confidence intervals for the mean of that treatment.  This is just a 

Source DF

Sum of 

Squares F Ratio Prob > F

Percent 

Contribution Source DF

Sum of 

Squares F Ratio Prob > F

Percent 

Contribution

WS 1 0.962 803.61 <.0001 70.35% WS 1 0.00032 262.43 <.0001 95.77%

NC 1 0.330 275.70 <.0001 24.13% 1

WS*NC 1 0.017 14.60 0.0002 1.28% 1

NC*NT*AS 1 0.011 8.91 0.003 0.78% 1

NC*NT*AS*AT 1 0.008 6.82 0.0094 0.60% 1

TP% FP%
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reference since the data are not normally distributed.  Looking at Figure 22, the mean for 

the larger window size looks much higher than the mean for the smaller window size; 

though, there appears to be an overlap of some of the samples.  The results of the 

ANOVA indicate that a window size of four had a mean response between 60.36% and 

62.90% and a window size of 11 had a mean between 83.92% and 86.64%.  The larger 

window size was able to detect more of the attacks and abnormal cycles, though the 

results are much less than the 100% detection rate of abnormal cycles when no attacks 

were present.  The K-W test was also performed because the residuals appeared to 

deviate from normality.  With a chi-squared p-value of less than 0.0001, the null 

hypothesis that the mean of the ranks of the two window sizes being identical was 

rejected and the results of the ANOVA are confirmed.  These results indicate that the 

model performance is sensitive to the window size setting; a larger window size resulted 

in better detection rates. 

 

Figure 22.  TP% values for small and large window size (WS). 

  

 Next, the impact of window size on FP% are analyzed.  A graph of TP% for each 

window size (WS) is shown in Figure 23.  Here, Figure 23 shows a dramatic difference 
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between the FP% of each window size with the larger window size having poorer 

performance; though, the scale of the graph is only between 2.4% and 3.6% FP%.  The 

results of the ANOVA indicate that a window size of four had a mean response between 

2.80% and 2.82% FP% and a window size of 11 cycles had a mean between 3.25% and 

3.28% FP%.  Here, the smaller window size had better performance with a lower FP%, 

though it was only a slight difference.  Again, the residuals appeared to deviate from 

normality.  The K-W test also concluded, with a p-value less than 0.0001, that the 

treatment mean ranks were different and that the smaller window size had a lower mean 

rank FP%.  Here, the model setting using a smaller window size resulted in fewer false 

positives, but only by a small amount.   

 

Figure 23.  FP% values for small and large window size (WS). 

  

 The window size had a significant impact on the mean response for both TP% and 

FP%.  The larger window size was better at detecting problem cycles and the smaller 

window size had a lower FP%.  This is likely a result of smaller window sizes having a 

larger anomaly threshold, which reports fewer false alarms but detects fewer problems.  

Overall, the larger window size had an improvement in TP% between 21.02% to 26.25% 
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and only 0.45% to 0.48% more FP%.  As discussed previously, a SCADA system owner 

values problem/attack detection over lower false positives; therefore, a larger window 

size would be preferred.  Since the larger window size significantly outperformed the 

smaller window model in detecting attacks/problems, the remaining analysis mainly 

focuses on the impact of the attack scenario factors on the larger window model and the 

TP% response.   

     Attack Scenario Factors 

 Now that the analysis has shown the significance of window size on TP% and 

FP% overall, the impact of the attack scenario factors on the higher-performing model 

will be evaluated.  The data is reduced to only include the window size of 11 cycles.  An 

ANOVA is used to evaluate the significance of all the attack scenario factors and their 

full factorial interactions.   

 The TP% significant factors for window size 11 are shown in Table 9.  The larger 

window size had three significant treatments:  number of cycles attacked (NC), attack 

type (AT), and the interaction between the number of targets attacked and the attack type 

(NT*AT).  There were no significant factors for FP%.  The residuals appeared normally 

distributed.  The attack type is examined next.  

Table 9.  TP% and FP% significant treatments for window size 11. 

 
 

 

Source DF

Sum of 

Squares F Ratio Prob > F

Percent 

Contribution Source DF

Sum of 

Squares F Ratio Prob > F

Percent 

Contribution

NC 1 0.580 482.05 <.0001 90.95% <none> 1

NT*AT 1 0.017 13.87 0.0003 2.62% 1

NT 1 0.017 13.87 0.0003 2.62% 1

TP% FP%
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 The two levels of attack type are adding alarms and removing alarms to the 

SCADA system.  This research is interested to determine if it is more difficult to detect 

removing alarms from a system that does not have a lot alarms occurring, such as the 

water treatment data used here.  It is expected that the removing alarm attack type is more 

difficult to detect since anomalies are only flagged for large positive prediction errors.  

An ANOVA was used to test the hypothesis that the mean TP% for adding alarms is 

equal to the mean TP% for removing alarms.  A graph of TP% for the attack type (AT) of 

adding alarms (Add) and removing alarms (Rem) is shown in Figure 24.  In Figure 24, it 

appears that the model is doing better at detecting the attack type of adding alarms than 

removing alarms.  The results of the ANOVA indicate that adding alarms had a mean 

TP% between 85.32% and 89.26% and removing alarms has a mean TP% between 

81.11% and 85.05%.  The results confirm that adding alarms were detected more often 

than removing alarms.  The K-W test also concluded, with a p-value 0.0002, that the 

treatment mean ranks were different and indicated that adding alarms had a higher mean 

rank TP% than removing alarms.  These results indicate that the detection model is better 

at detecting attacks where alarms are added versus attacks where alarms are 

removed/hidden.  Therefore, this model may have a difficult time detecting an attacker 

changing components and hiding the changes from the operator.  This makes sense since 

the model only using positive changes in entropy and removing alarms would likely 

decrease the entropy of the system. 
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Figure 24.  TP% values for the attack type (AT) of adding alarms (Add) and 

removing alarms (Rem). 

 

 At this point in the analysis, there is a concern that the detection of the attack 

scenarios is biased due to the known problems/abnormal cycles in the data.  There are 14 

abnormal cycles in the data that are 100% detected when no alarms are present; this could 

be causing the overall detection percent to be high.  For example, if all 14 problems are 

detected and 3 attacks are not detected, the overall TP% is 
  

  
 = 82.35%.  This may give 

the impression that the model is detecting about 80% of problems and attacks, when in 

reality the model is only detecting the system problems and is missing the attacks.  This 

may be because the model was optimized to detect the system problems.  (It may be of 

interest in future research to optimize the detection model using a combination of known 

system problems and known attacks instead of known system problems alone.)  The 

presence of abnormal cycles in the data prevented conclusions to be drawn concerning 

the detection of attacks alone.  Therefore, a modified dataset containing no abnormal 

cycles was used to analyze the attack scenarios.  
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Factorial Experiment - Modified Dataset 

 The water treatment plant dataset was modified to analyze the performance of the 

anomaly detection model against attacks without a potential bias from abnormal cycles.  

This research was interested in evaluating how well the model detects the different attack 

scenarios without being biased by the system problems the model was optimized to 

detect.  To create the modified dataset, every cycle with an abnormal state was removed.  

Additionally, the cycles before and after the abnormal cycle were also removed in case 

those readings were affected by the abnormal cycle.  The full factorial experiment was 

repeated on the modified dataset, except that only the adding alarms attack type was used.  

Each replicate had 48 samples. 

     All Factors 

 An ANOVA was used to evaluate all the treatments in the experiment.  The 

significant treatments are shown in Table 10.  The main effects and interaction of the 

number of targets (NT) and the number of components (NC) were the treatments with the 

largest percent contribution to the TP% sum of squares.  Window size was also a 

significant factor for TP%.  For FP%, window size was the only significant factor and 

had about a 95% contribution to the sum of squares.  The model parameter of window 

size will be analyzed to determine if smaller window sizes were significantly different 

than a larger window size when no abnormal cycles were in the data. 
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Table 10.   TP% and FP% significant factors, modified dataset. 

 
    

    Window Size 

 The performance of window size was analyzed using the modified dataset.  Figure 

25 shows a graph of the TP% values for each window size (WS).  The graph shows that 

the mean ranges slightly overlap.  Using ANOVA, the mean TP% for window size four is 

between 21.50% and 36.56% and the mean TP% for window size 11 is between 34.41 

and 49.48%.  Though they overlap at the 95% confidence interval, the ANOVA results 

indicate that the two window sizes are statistically different at a p-value of 0.0177.  Since 

the residuals appeared to deviate from normality, the K-W test was performed.  The K-W 

test confirmed that the mean ranks were different at a p-value of 0.0043 and that the 

larger window size had a larger mean rank TP% than the smaller window size.  The 

results indicate that the model setting using a larger window size was better at detecting 

attacks, as it was when using the original dataset. 

Source DF

Sum of 

Squares F Ratio Prob > F

Percent 

Contribution Source DF

Sum of 

Squares F Ratio Prob > F

Percent 

Contribution

NT 1 4.800 85.16 <.0001 64.99% WS 1 0.00035 242.74 <.0001 95.45%

NC*NT 1 1.611 28.59 <.0001 21.82% 1

WS 1 0.300 5.32 0.0221 4.06% 1

NC*NT*AS 1 0.252 4.47 0.0358 3.41% 1

TP% FP%
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Figure 25.  TP% for each window size (WS) using the modified dataset. 

 

 The same procedure was used to analyze the impact of window size on FP% for 

the modified dataset.  Figure 26 shows a graph of the FP% values for each window size 

(WS); the smaller window size appears to have a better FP%, though the scale is only 

between 1.8% and 3.2% FP%.  The ANOVA test resulted in a mean FP% between 2.30% 

and 2.35% for window size four and between 2.92% and 2.97% for window size 11.  The 

K-W test confirmed the results with a p-value less than 0.0001.  For both window sizes, 

the mean FP% was less than 3%.  Similar to the results using the original data, the 

smaller window size setting had a better performance concerning false positives, but 

there is little improvement and it does not outweigh the attack detection performance of 

the larger window setting. 



90 

 

Figure 26.  FP% for each window size using the modified dataset. 

  The results from analyzing the impact of window size on TP% were similar to 

the results from the unaltered dataset that contained abnormal cycles.  This analysis 

shows that the model was detecting between 85-89% of problems and attacks overall, but 

only 34-49% of the attacks alone were being detected.  The confidence range of the mean 

increased for the modified dataset, which indicates that there was more variation in the 

percent of attacks alone detected than the percentage of attacks and problems detected 

overall.  Next, the significance of the attack scenario treatments were evaluated. 

     Attack Scenario Factors 

 A full factorial ANOVA was performed on each window size using the modified 

dataset.  Here the significant treatments for both window sizes were compared.  Table 11 

shows the results for window size four and 11 using the modified dataset.  The original 

data had the number of cycles (NC) as the highest contributing factor; using the modified 

data, it was the number of targets attacked (NT).  The 11-cycle window size, shown on 

the right side of Table 11, also included the NC*NT interaction as a significant treatment.  

The four-cycle window size included the same top two treatments, plus the three-way 
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interaction of attack spacing (AS), NC, and NT.  Operationally it makes sense that the 

smaller window size was sensitive to the spacing of the alarm manipulations, whereas the 

larger window size is not.  Smaller window sizes would likely detect alarm manipulations 

spaced over a short interval.  

Table 11.  TP% significant treatments for window size four and 11 using the 

modified data. 

 

   The effects of the number of targets and cycles attacked, and their interaction, 

were analyzed for window size 11.  The results of these effects are shown in Figure 27.  

Increasing the number of cycles attacked (NC) decreased the TP%; the rate of decrease in 

TP% depended on the number of targets (NT) attacked (bottom left quadrant of figure).  

In other words, fewer attacks were detected when there were more attacks applied.  This 

may be due to the entropy of the sliding window leveling off for successive cycle attacks.  

Increasing the number of targets attacked (NT) increased the TP%; the rate of increase 

depended on the number of cycles (NC) attacked (top right quadrant of figure).  When 

five components were attacked in one cycle only, the model always detected the attack.  

A larger number of targets attacked mimics more components being out of threshold for a 

given cycle and therefore the model is better able to detect them.   

Source DF

Sum of 

Squares F Ratio Prob > F

Percent 

Contribution Source DF

Sum of 

Squares F Ratio Prob > F

Percent 

Contribution

NT 1 4.800 88.24 <.0001 70.21% NT 1 4.800 82.29 <.0001 80.00%

NC*NT 1 1.611 29.62 <.0001 23.57% NC*NT 1 0.938 16.07 0.0001 15.63%

NC*NT*AS 1 0.252 4.63 0.0339 3.69% 1

Window Size 4, Modified Data Window Size 11, Modified Data
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Figure 27.  Effects of number of cycles (NC) and number of targets (NT) attacked 

for window size 11 using the modified dataset. 

 

     Attack Distribution 

 The attack distribution did not appear as a significant factor for the TP% for either 

window size.  To confirm the lack of impact from using a grouped (Grp), distributed 

(Dst), or increasing (Inc) alarm manipulations, an ANOVA of the attack distribution 

factor on the TP% was performed.  Figure 28 and Figure 29 display a graph of the TP% 

values for the attack distribution (AD) levels of grouped (Grp), distributed (Dst), and 

increasing (Inc) attacks for window size four and 11, respectively.  There did not appear 

to be a difference in the TP% means for the levels of attack distribution in either of the 

graphs.  With a p-value of 0.77 for both window sizes, there was not enough evidence to 

reject the null hypothesis that the means were equal.  The K-W had the same result with a 

p-value of 0.99 for window size four and 0.85 for window size 11.  These results indicate 

that the model had a similar performance for the differ types of attack distributions on 

this data set. 
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Figure 28.  TP% values for the attack distribution (AD) levels of grouped (Grp), 

distributed (Dst), and increasing (Inc) attacks, using window size 4. 

 

 

Figure 29.  TP% values for the attack distribution (AD) levels of grouped (Grp), 

distributed (Dst), and increasing (Inc) attacks, using window size 11. 

Conclusion 

 Overall, the entropy based anomaly detection model was successful in detecting 

100% of the abnormal system states and some of the attacks using data from a water 

treatment plant.  Higher threshold tolerances (and therefore fewer component alarms) 

resulted in higher detection percentages and fewer false alarms.  The larger window size 

was significantly better at detecting attacks than the smaller window size, resulting in an 

overall TP% improvement of about 20%.  The smaller window size was more sensitive to 

the attack spacing, but neither window size had attack distribution as a significant factor.  

The larger window size resulted in an increase in FP% of about 0.5%, which equates to 
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about two false alarm days in a year.  This may be acceptable depending on the cost of 

responding to a false alarm.  The analysis showed an interaction between the number of 

cycles attacked and the number of targets attacked.  More attacks were detected when 

more components were attacked.  Fewer attacks were detected when more cycles were 

attacked, which may be due to the sliding window causing smaller increases in entropy 

for successive cycles attacked. 

 Ultimately, the anomaly detection model performed well in detecting system 

problems in the water treatment plant data, which is expected since the model settings 

were optimized to detect all of the system problems.  The detection model did not detect 

a majority of attacks overall, but did well against isolated attacks involving a larger 

number of components.   
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V.  Conclusions 

Conclusions 

 As critical infrastructure SCADA systems continue to use network connections to 

the internet and increase their vulnerability to cyber attacks, steps will be required to 

improve their security.  This research developed an anomaly detection model based on 

information entropy for use on a supervisory control and data acquisition (SCADA).  The 

objective was to create a model using SCADA component alarms to identify system 

problems and attacks and to analyze the impact of different attack scenarios.  Entropy 

was used to quantify the uncertainty of the distribution of SCADA alarms over time and 

an anomaly flag was triggered if changes in entropy exceeded a defined threshold.  

  A proof of concept was demonstrated by applying the anomaly detection model to 

SCADA data from a water treatment plant.  The results are particular to the dataset used.  

The model detected 100% of the known system problems at an observed false alarm 

percentage of 3.4%.  The research found the model to be more effective when the 

component alarm thresholds allowed fewer alarms, though the false positive percentage 

increased when there were too few alarms.  A full factorial experiment was conducted to 

analyze the significance of different attack scenario factors and the window size model 

parameter.  A larger window size resulted in much higher true positive percentage 

(~20%) and only a slight increase in false alarm percentage (~0.5%).  The number of 

cycles attacked was the significant factor with the most percent contribution to the total 

sum of squares.  The interaction of attack type (adding or removing alarms) and the 

number of targets attacked was also significant.  There was a concern that the results 
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were biased due to the abnormal cycles in the data, therefore the experiment was repeated 

after removing those cycles. 

 The model was also evaluated on detecting attacks only, without any known 

system problems present.  The water treatment plant dataset was modified to remove all 

known abnormal cycles/system problems.  The factorial experiment was used to analyze 

the model, but looking at the attack type of adding attacks only.  This experiment focused 

on adding alarms only because the model was optimized to detect these types of attacks.  

The analysis revealed that only about 35-50% of the attacks were detected versus about 

85-89% detection of attacks system problems combined.  The most significant treatments 

affecting the true positive percentage were the number of targets attacked and the 

interaction of the number of targets attacked and the number of cycles attacked.  The 

results showed that attacks were detected more often when more components were 

attacked in the same cycle.  Additionally, attacking more cycles decreased the detection 

rate.  This is likely due to the sliding window covering more than one attacked cycle and 

suppressing the change in entropy.  The results did not show a statistical difference for 

changing the attack distribution.  The literature review indicated that a slow and 

increasing attack may be harder to detect using the sliding window approach, but the 

results from the water treatment data, and the model parameters evaluated here, indicate 

otherwise.   

 Overall, it is recommended that this model be further evaluated to determine if it 

is useful for real-time anomaly detection on a live SCADA system.  The results found 

here may be specific to this water treatment plant data set.  This research indicates that 

the model may be able to detect system problems and certain types of alarm manipulation 
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attacks.  It also showed that attacks involving a small number of components or attacks 

against successive cycles may go undetected by this model.  The next sections describe 

some of the limitations to this research, its contributions, and potential future areas of 

study with this topic.   

Limitations 

 There were some limitations to this research.  The water treatment dataset was 

missing many sensor readings.  The missing values were imputed using the last observed 

value.  This may have adversely affected the baseline data used to set the anomaly 

threshold and/or impacted the false alarm percentage.  Additionally, the water treatment 

data did not specify the alarm thresholds for each sensor.  These values were derived 

using the anomaly detection model.  Finally, the anomaly flag directed the user to a 

specific cycle where a problem or attack may have occurred, but did not specify which 

components had the issue.   

Contributions 

 The greatest contribution from this research is a methodology for using 

information entropy in an anomaly detection model to detect problems in a SCADA 

system.  The results of this thesis show a proof of concept that an entropy based anomaly 

detection model may be useful to SCADA operators.  The model converts continuous 

data into discrete message types, which is necessary for applying information theory.  

The model is scalable to SCADA systems with more or less components, though the 

detection model appeared to have poorer performance when too many alarms were 

present.  This methodology may also be useful for non-SCADA systems.  The model is 
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independent of the time unit of the SCADA polling cycle.  Here, each cycle was one day, 

but the model is insensitive to the unit of time.   

 The procedure for defining the sensor thresholds could be applied in a more 

general sense.  This research used the anomaly detection model to set the SCADA 

component alarm thresholds.  The process involved changing the alarm thresholds and 

determining the resulting detection rate for the abnormal states and the false alarm 

percentage.  This may also be useful for setting alarm thresholds to optimize attack 

detection. 

Future Research 

 The next step for evaluating this entropy based anomaly detection model is to 

analyze its use on other SCADA systems.  The results of this research are only conclusive 

to the water treatment plant data used here and the attack scenarios applied.  The results 

may differ for other systems and attack scenarios.  The potential exists for applying this 

model for real-time anomaly detection using systems with polling cycles occurring on the 

scale of minutes instead of days.  Future research should compare the performance of this 

model to other anomaly detection systems. 

 The model parameters are an area for future research.  The model used in this 

research depended on the forecasting algorithm to flag anomalies.  The methodology in 

Chapter III used the simple exponential smoothing technique, but the smoothing constant, 

alpha, was set to one using the dataset in Chapter IV.  This resulted in the prediction 

using only the last observed entropy value.  Other settings for alpha and the moving 

average interval may have different results on an alternate SCADA system. 
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 The literature review for this research related several different information 

theoretic measures that have been used for anomaly detection.  The model used in this 

study used information entropy.  There is a potential for adapting this model to employ 

such measures as conditional entropy, relative entropy, mutual information, and entropy 

error estimation.   

 Finally, there may be potential to apply the anomaly detection model at the 

component level or using a subset of the total number of components.  Some work in this 

area was started with disappointing results.  At the individual component level, the 

entropy over short windows varied greatly from zero to one.  This occurred because a 

small window covers only a few cycles and the messages often fall into one of three 

categories:  no alarms, half alarms, or all alarms.  If all the messages are the same (all 

alarms or no alarms), the entropy is zero.  If half of the messages are alarms, the entropy 

is one.  Using a single component and a small window size may not be advantageous for 

anomaly detection because the model could be too sensitive to entropy changes.  

Alternatively, one may be able to weigh the importance at the component level.  Winter, 

Lampesberger, Zeilinger, and Hermann (2011) weighted the prediction errors based on 

the importance of the event evaluated.  Similarly, an operator of a SCADA system may 

be able to prioritize the components of their system.   
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Appendix A.  Using the Anomaly Detection Model 

Setting Up Model with New Data 

 A user must use the following steps to add different data to the model to ensure 

the spreadsheet functions and Visual Basic macros work properly (regions requiring user 

formatting are highlighted in green): 

1. Copy messages to the Data spreadsheet in the format shown on the sheet. 

2. Complete the threshold value table as it applies to the new data on the Data sheet. 

3. Change the Origin and Alarm message columns on the Entropy(t) sheet to match the 

number of components in the new data. 

4. Change the attack matrices on the Entropy(t) spreadsheet to match the number of 

components and number of cycles in the new data. 

5. Adjust all the cell and array names in the Name Manager that begin with an underscore 

“_” to match the appropriate number of cells and columns. 

6. Copy or delete cells with formulas to the length of the columns as appropriate. 

 

Running the Model 

 The below steps describe how to run the anomaly detection model: 

1. Ensure the following Microsoft Excel Add-Ins are installed:  “Analysis ToolPak”, 

“Analysis ToolPak – VBA”, and “Solver Add-in”. 

2. Enter the number of cycles considered for analysis on the Data sheet.  If the user is 

running an experiment consisting of different window sizes then this number should be 

equal to the total number of cycles minus the largest window size.  This will cause the 

total number of cycles evaluated for each experimental run to be the same. 

3. On the Summary sheet, enter the known systems problems’ cycle numbers and problem 

codes.  Type any number for the attack code if you do not have attack code numbers.  

Leave the origin blank. 

4. Set the window size and baseline on the Entropy(t) sheet.  The baseline should not 

contain any system problems or attacks. 

5. Press the Calculate Baseline button. 

6. On the Baseline sheet, press the Optimize button to set the smoothing parameters. 

7. Determine the results with no attacks: 

a. Return to the Entropy(t) sheet and press the Clear Attacks button to remove any 

attacks in the attack matrix.   

b. Press the Calculate Attack button. 

c. On the Summary sheet, press the Detection Results button and then Save Output 

in New Sheet. 

8. Evaluate attacks: 

a. Enter attacks (by adding “1” in appropriate cycle and component on the attack 

matrices). 
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b. Press the Calculate Attack button. 

c. On the Summary sheet, press the Detection Results button.  Next, either copy and 

paste the results onto the saved sheet or press Save Output in New Sheet to start a 

new sheet. 

9. Run factorial experiment: 

a. On the DOE sheet, enter the desired levels for each continuous factor, the attack 

start cycle, and the number of replicates.  Ensure the total number of replicates 

does not exceed the total possible. 

b. Press the DOE button. 

c. Copy and paste the results onto the saved sheet from Step 7. 

d. Return to Step 4 and repeat. 
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Appendix B:  Detailed Description of Water Treatment Dataset 

 The database used in this project was found in the UCI Machine Learning 

Repository (Bache & Lichman, 2013).   The water treatment process includes:  input to 

the plant, input to the primary settler, input to the secondary settler, outputs, and 

performance measurements.  Figure 30 shows a brief description of each variable.  The 

variables are colored to show the differences in where they are located in the water 

treatment process. 

 
Figure 30.  The 38 sensors/variables for the water treatment dataset. 

 1  Q-E        (input flow to plant)  

 2  ZN-E       (input Zinc to plant)

 3  PH-E       (input pH to plant) 

 4  DBO-E      (input Biological demand of oxygen to plant) 

 5  DQO-E      (input chemical demand of oxygen to plant)

 6  SS-E       (input suspended solids to plant)  

 7  SSV-E      (input volatile supended solids to plant)

 8  SED-E      (input sediments to plant) 

 9  COND-E     (input conductivity to plant) 

10  PH-P       (input pH to primary settler)

11  DBO-P      (input Biological demand of oxygen to primary settler)

12  SS-P       (input suspended solids to primary settler)

13  SSV-P      (input volatile supended solids to primary settler)

14  SED-P      (input sediments to primary settler) 

15  COND-P     (input conductivity to primary settler)

16  PH-D       (input pH to secondary settler) 

17  DBO-D      (input Biological demand of oxygen to secondary settler)

18  DQO-D      (input chemical demand of oxygen to secondary settler)

19  SS-D       (input suspended solids to secondary settler)

20  SSV-D      (input volatile supended solids to secondary settler)

21  SED-D      (input sediments to secondary settler)  

22  COND-D     (input conductivity to secondary settler) 

23  PH-S       (output pH)   

24  DBO-S      (output Biological demand of oxygen)

25  DQO-S      (output chemical demand of oxygen)

26  SS-S       (output suspended solids)

27  SSV-S      (output volatile supended solids) 

28  SED-S      (output sediments) 

29  COND-S     (output conductivity)

30  RD-DBO-P   (performance input Biological demand of oxygen in primary settler)

31  RD-SS-P    (performance input suspended solids to primary settler)

32  RD-SED-P   (performance input sediments to primary settler)

33  RD-DBO-S   (performance input Biological demand of oxygen to secondary settler)

34  RD-DQO-S   (performance input chemical demand of oxygen to secondary settler)

35  RD-DBO-G   (global performance input Biological demand of oxygen)

36  RD-DQO-G   (global performance input chemical demand of oxygen)

37  RD-SS-G    (global performance input suspended solids) 

38  RD-SED-G   (global performance input sediments)
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 The operational classification of the plant state was provided with the dataset for 

each sample.  Table 12 shows the 13 states and the number of samples with that class.  

The four largest classes are in red and represent the normal plant states.  The other states 

comprise the abnormal states that consist of 14 samples.  The abnormal states were used 

as known system problems in Chapter IV. 

Table 12.  Operational classes of plant state and number of samples with that state. 
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Appendix C:  Thesis Poster 
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